Skip to main content
Log in

Manganese Clusterization in ZnS:Mn, Mg Synthesized by Self-Propagating High-Temperature Synthesis

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The ZnS:Mn, Mg powder is fabricated by self-propagating high-temperature synthesis with the simultaneous introduction of Mn and Mg impurities. It is found that the simultaneous introduction of Mn and Mg impurities leads to the nonuniform distribution of manganese forming regions with a lower and higher Mn concentration. In the latter case, the manganese ions form paramagnetic clusters. At the same time, numerous centers of self-activated luminescence form in the synthesized ZnS:Mn, Mg due to mechanical stress and lattice strain. Additional annealing leads to a more uniform Mn distribution in the formed ZnS:Mn, Mg phosphor, which is accompanied by an increase in the intensity of the manganese photoluminescence band and quenching of the self-activated luminescence band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, J. Cryst. Growth 214–215, 1125 (2000).

  2. M. P. Sarma, J. M. Kalita, and G. Wary, Mater. Sci. Semicond. Proc. 61, 131 (2017).

    Article  Google Scholar 

  3. S. K. Nayak and P. Jena, Chem. Phys. Lett. 289, 473 (1998).

    Article  ADS  Google Scholar 

  4. M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001).

    Article  ADS  Google Scholar 

  5. R. L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002).

    Book  Google Scholar 

  6. J. S. Becker and H. J. Dietze, J. Anal. Chem. 359, 338 (1997).

    Google Scholar 

  7. H. Pauly, Atom, Molecule, and Cluster Beams I: Basic Theory, Production and Detection of Thermal Energy Beams (Springer, Germany, 2000).

    Book  Google Scholar 

  8. V. S. Trofimov and E. V. Petrov, Int. J. Self-Propag. High-Temp. Synth. 23, 187 (2014).

    Article  Google Scholar 

  9. S. T. Aruna and A. S. Mukasyan, Curr. Opin. Solid-State Mater. Sci. 12, 44 (2008).

    Article  ADS  Google Scholar 

  10. S. H. Ryu, W. K. Kim, and S. E. Lee, Trans. Electric. Electron. Mater. 14, 24 (2013).

    Google Scholar 

  11. J. Yuan, D. Haneman, and B. Gong, Mater. Res. Innov. 2, 223 (1999).

    Article  Google Scholar 

  12. ICDD The International Centre for Diffraction Data. www.icdd.com.

  13. A. L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  ADS  Google Scholar 

  14. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants (Longman, London, New York, 1986).

    MATH  Google Scholar 

  15. Physics and Chemistry of II–VI Compounds, Ed. by M. Aven and J. S. Prener (North-Holland, Amsterdam, New York, 1967).

    Google Scholar 

  16. Yu. Yu. Bacherikov, N. P. Baran, I. P. Vorona, A. V. Gilchuk, A. G. Zhuk, Yu. O. Polishchuk, S. R. Lavorik, V. P. Kladko, S. V. Kozitskii, E. F. Venger, and N. E. Korsunska, J. Mater. Sci.: Mater. Electron. 28, 8569 (2017).

    Google Scholar 

  17. Yu. Yu. Bacherikov, I. Vorona, A. Zhuk, A. V. Gilchuk, N. Korsunska, and I. Markevich, Semicond. Sci. Technol. 32, 1 (2017).

    Article  Google Scholar 

  18. N. K. Morozova, I. A. Karetnikov, V. V. Blinov, and E. M. Gavrishchuk, Semiconductors 35, 24 (2001).

    Article  ADS  Google Scholar 

  19. J. Díaz-Reyes, R. S. Castillo-Ojeda, R. Sanchez-Espíndola, M. Galvan-Arellano, and O. Zaca-Moran, Curr. Appl. Phys. 15, 103 (2015).

    Article  ADS  Google Scholar 

  20. V. F. Tunitskaya, T. F. Filina, E. I. Panasyuk, and Z. P. Ilyukhina, Zh. Prikl. Spektrosk. 14, 239 (1971).

    Google Scholar 

  21. N. K. Morozova, I. A. Karetnikov, K. V. Golub, N. D. Danilevich, V. M. Lisitsyn, and V. I. Oleshko, Semiconductors 39, 485 (2005).

    Article  ADS  Google Scholar 

  22. N. D. Borisenko, M. F. Bulanyi, F. F. Kodzhespirov, and B. A. Polezhaev, Zh. Prikl. Spektrosk. 55, 452 (1991).

    Google Scholar 

  23. M. F. Bulanyi, B. A. Polezhaev, and T. A. Prokof’ev, Semiconductors 32, 603 (1998).

    Article  ADS  Google Scholar 

  24. N. Karar, F. Singh, and B. R. Mehta, J. Appl. Phys. 95, 656 (2004).

    Article  ADS  Google Scholar 

  25. M. F. Bulanyi, B. A. Polezhaev, T. A. Prokof’ev, and I. M. Chernenko, J. Appl. Spectrosc. 67, 282 (2000).

    Article  ADS  Google Scholar 

  26. W. Busse, H. Gumlish, and R. O. Tornqvist, Phys. Status Solidi A 76, 553 (1983).

    Article  ADS  Google Scholar 

  27. L. M. Dong, M. J. Li, X. D. Liu, K. J. Wu, and Y. K. Guo, J. Ovonic Res. 12, 155 (2016).

  28. H. Joy Prabu, and I. Johnson, Int. J. Eng. Res. Appl. 5, 99 (2015).

    Google Scholar 

  29. D. A. Reddy, D. H. Kim, S. J. Rhee, B. W. Lee, and C. Liu, Nanoscale Res. Lett. 9, 20 (2014).

    Article  Google Scholar 

  30. T. A. Prokof’ev, B. A. Polezhaev, and A. V. Kovalenko, J. Appl. Spectrosc. 72, 865 (2005).

    Article  ADS  Google Scholar 

  31. V. F. Agekyan, Phys. Solid State 44, 2013 (2002).

    Article  ADS  Google Scholar 

  32. Yu. Yu. Bacherikov, Phys. Solid State 52, 1653 (2010).

    Article  ADS  Google Scholar 

  33. V. Nosenko, I. Vorona, V. Grachev, S. Ishchenko, N. Baran, Yu. Bacherikov, A. Zhuk, Yu. Polishchuk, V. Kladko, and A. Selishchev, Nanoscale Res. Lett. 11, 517 (2016).

    Article  ADS  Google Scholar 

  34. C. Barglik-Chory, C. Remenyi, C. Dem, M. Schmitt, W. Kiefer, C. Gould, C. Rüster, G. Schmidt, D. M. Hofmann, D. Pfisterer, and G. Muler, Phys. Chem. Chem. Phys. 5, 1639 (2003).

    Article  Google Scholar 

  35. N. Feltin, L. Levy, D. Ingert, and M. P. Pileni, J. Phys. Chem. B 103, 4 (1999).

    Article  Google Scholar 

  36. G. Counio, S. Esnouf, T. Gacoin, and J.-P. Boilot, J. Phys. Chem. 100, 20021 (1996).

    Article  Google Scholar 

  37. J. D. Bryan and D. R. Gamelin, Progr. Inorg. Chem. 54, 47 (2005).

    Article  Google Scholar 

  38. Yu. Yu. Bacherikov, I. P. Vorona, A. A. Konchits, S. V. Optasyuk, S. V. Kozitskiy, and K. D. Kardashov, Funct. Mater. 17, 158 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Bacherikov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacherikov, Y.Y., Vorona, I.P., Okhrimenko, O.B. et al. Manganese Clusterization in ZnS:Mn, Mg Synthesized by Self-Propagating High-Temperature Synthesis. Semiconductors 54, 330–336 (2020). https://doi.org/10.1134/S1063782620030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620030033

Keywords:

Navigation