Advertisement

Comparison of the Effects of Environmental Treatments on Hydrogen Concentration and Energy Gap Variations of Hydrogenated Amorphous and Polymorphous Silicon Films Prepared by PECVD Technique

Abstract

Hydrogen to silicon (Si–H) bond concentration and strength play important roles in high quality hydrogenated amorphous silicon layers prepared by PECVD techniques. In this paper, a number of amorphous and polymorphous Si layers have been deposited at different plasma conditions where a wide range of hydrogen concentration in the films are obtained. Some of the samples were stored in free air and the others in nitrogen for eight days. The layers were analyzed using AFM, FTIR, Raman, UV–Visible, and TEM immediately after deposition and after treatments. The results indicate that in the amorphous films with appreciable amount of embedded silicon nanocrystals, the variation of hydrogen content behaves differently than that of the amorphous films. It has been observed that treatment in the air increases the energy gap of the nanocrystals surrounded by oxide shells, formed around the surface nanocrystals, due to the quantum confinement effects.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    R. Ambrosio, M. Moreno, A. Torres, A. Carrillo, I. Vivaldo, I. Cosme, and A. Heredia, J. Alloys Compd. 643, S27 (2015).

  2. 2

    T. Matsui, H. Sai, A. Bidiville, H.-J. Hsu, and K. Matsubara, Sol. Energy 170, 486 (2018).

  3. 3

    J. Ganji, Renewable Energy (2019, in press).

  4. 4

    J. Ganji, A. Kosarian, and H. Kaabi, Silicon, 1 (2019).

  5. 5

    Z. Qiao, X. Xie, Q. Hao, D. Wen, J. Xue, and C. Liu, Appl. Surf. Sci. 324, 152 (2015).

  6. 6

    R. A. Street, Hydrogenated Amorphous Silicon, 1st ed. (Cambridge Univ. Press, Cambridge, 1991).

  7. 7

    M. Stuckelberger, R. Biron, N. Wyrsch, F.-J. Haug, and C. Ballif, Renewable Sustainable Energy Rev. 76, 1497 (2017).

  8. 8

    G. Seguini, C. Castro, S. Schamm-Chardon, G. Benassayag, P. Pellegrino, and M. Perego, Appl. Phys. Lett. 103, 23103 (2013).

  9. 9

    G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, and T. Puzzer, Thin Solid Films 511, 654 (2006).

  10. 10

    G. Viera, M. Mikikian, E. Bertran, P. R. i Cabarrocas, and L. Boufendi, J. Appl. Phys. 92, 4684 (2002).

  11. 11

    H. Aguas, P. R. i Cabarrocas, S. Lebib, V. Silva, E. Fortunato, and R. Martins, Thin Solid Films 427, 6 (2003).

  12. 12

    R. N. Pereira and A. J. Almeida, J. Phys. D: Appl. Phys. 48, 314005 (2015).

  13. 13

    E. Arduca and M. Perego, Mater. Sci. Semicond. Process. 62, 156 (2017).

  14. 14

    E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, Appl. Phys. Rev. 1, 11302 (2014).

  15. 15

    X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).

  16. 16

    A. H. Mahan, L. M. Gedvilas, and J. D. Webb, J. Appl. Phys. 87, 1650 (2000).

  17. 17

    L. Guo, J. Ding, J. Yang, G. Cheng, Z. Ling, and N. Yuan, Appl. Surf. Sci. 257, 9840 (2011).

  18. 18

    M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, 3556 (1977).

  19. 19

    M. Sharma, S. Juneja, S. Sudhakar, D. Chaudhary, and S. Kumar, Mater. Sci. Semicond. Process. 43, 41 (2016).

  20. 20

    F. Demichelis, E. Minetti-Mezzetti, A. Tagliaferro, E. Tresso, P. Rava, and N. M. Ravindra, J. Appl. Phys. 59, 611 (1986).

  21. 21

    C. Shin, S. M. Iftiquar, J. Park, S. Ahn, S. Kim, J. Jung, S. Bong, and J. Yi, Mater. Chem. Phys. 159, 64 (2015).

  22. 22

    M. Gunes and C. R. Wronski, J. Appl. Phys. 81, 3526 (1997).

  23. 23

    M. G. de Greef and F. A. Rubinelli, Phys. Status Solidi 252, 170 (2015).

  24. 24

    K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

  25. 25

    D. Das, Solid State Phenom. Trans Tech Publ., 227 (1995).

  26. 26

    J. C. Knights, Jpn. J. Appl. Phys. 18, 101 (1979).

  27. 27

    H. Shirai, J. Hanna, and I. Shimizu, Jpn. J. Appl. Phys. 30, L679 (1991).

  28. 28

    J. Palmans, W. M. M. Kessels, and M. Creatore, J. Phys. D: Appl. Phys. 47, 224003 (2014).

  29. 29

    P. Biswas, D. Paudel, R. Atta-Fynn, D. A. Drabold, and S. R. Elliott, Phys. Rev. Appl. 7, 24013 (2017).

  30. 30

    A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Phys. Rev. B 45, 13367 (1992).

  31. 31

    S. Veprek and M. G. J. Veprek-Heijman, Appl. Phys. Lett. 56, 1766 (1990).

  32. 32

    N. Itabashi, N. Nishiwaki, M. Magane, S. Naito, T. Goto, A. Matsuda, C. Yamada, and E. Hirota, Jpn. J. Appl. Phys. 29, L505 (1990).

  33. 33

    T. Hama, H. Okamoto, Y. Hamakawa, and T. Matsubara, J. Non. Cryst. Solids 59, 333 (1983).

  34. 34

    C. Koch, M. Ito, and M. Schubert, Sol. Energy Mater. Sol. Cells 68, 227 (2001).

  35. 35

    J. Perrin and T. Broekhuizen, Appl. Phys. Lett. 50, 433 (1987).

  36. 36

    M. J. Kushner, J. Appl. Phys. 63, 2532 (1988).

  37. 37

    K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, A. Matsuda, W. Futako, and I. Shimizu, Appl. Phys. Lett. 71, 3403 (1997).

  38. 38

    F. Z. Sahraoui, A. Kebab, A. Bouhekka, J. D. Sib, Y. Bouizem, D. Benlakehal, and L. Chahed, Optik (Stuttg). 168, 65 (2018).

  39. 39

    A. Descoeudres, C. Allebe, N. Badel, L. Barraud, J. Champliaud, G. Christmann, F. Debrot, A. Faes, J. Geissbuhler, and J. Horzel, Sol. Energy (2018, in press).

  40. 40

    M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, R. Bittl, C. Teutloff, and K. Lips, Phys. Rev. Lett. 112, 66403 (2014).

  41. 41

    S. Sheng, H. Hao, H. Diao, X. Zeng, Y. Xu, X. Liao, and T. L. Monchesky, Appl. Surf. Sci. 253, 1677 (2006).

  42. 42

    T. Kaneko, K. Onisawa, M. Wakagi, Y. Kita, and T. Minemura, Jpn. J. Appl. Phys. 32, 4907 (1993).

Download references

Author information

Correspondence to Alireza Keramatzadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keramatzadeh, A., Kosarian, A. & Kaabi, H. Comparison of the Effects of Environmental Treatments on Hydrogen Concentration and Energy Gap Variations of Hydrogenated Amorphous and Polymorphous Silicon Films Prepared by PECVD Technique. Semiconductors 54, 91–101 (2020). https://doi.org/10.1134/S1063782620010121

Download citation

Keywords:

  • hydrogen content
  • nanocrystal embedded
  • polymorphous silicon
  • amorphous film