First-Principles Investigation of Electronic Properties of GaAsxSb1 –x Ternary Alloys
- 1 Downloads
Abstract
Compositional variations in GaAs based ternary alloys have exhibited wide range alterations in electronic properties. In the present paper, first-principles study of GaAsxSb1 – x ternary alloys have been presented and discussed. Density functional theory (DFT) computation based on the full-potential (linearized) augmented plane-wave (FP-LAPW) method has been utilized to calculate the Density of States (DOS) and the band structure of ternary alloys GaAsxSb1 – x (x = 0, 0.25, 0.50, 0.75, 1). The calculations were performed using the exchange-correlation energy functional from Perdew, Burke, and Ernzerhof, a generalized-gradient approximation (GGAPBE) and Becke-Johnson exchange potential with local-density approximation (BJLDA) available within the framework of WIEN2k code. As compared to PBE, the results obtained from BJLDA are in close agreement with other experimental works. The DOS results show a reduction in bandgap as the Sb fraction is increased in GaAsxSb1 – x ternary alloys. The bandgap obtained by PBE and BJLDA are found to deviate from Vegard’s law, i.e., it doesn’t vary linearly with composition. However, the bandgap obtained by BJLD is found to closely match Vegard’s law when the bowing parameter is considered.
Keywords:
GaAsSb ternary DOS LAPW PBE Becke-Johnson potentialNotes
ACKNOWLEDGMENTS
Authors are thankful to Prof. Karlheinz Schwarz and Dr. Peter Blaha (TU Wien, Getreidemarkt 9/165TC, A-1060 Vienna, AUSTRIA) for the WIEN2k software package. Amit Rathi and A.K. Singh acknowledge the financial support from Manipal University Jaipur, Jaipur 303007, Rajasthan, India under Project Seed Grant: MUJ/REGR/1467/13. P.A. Alvi is also grateful to “Banasthali Centre for Research and Education in Basic Sciences” under CURIE programme supported by the DST, Government of India, New Delhi.
REFERENCES
- 1.J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, et al., Nature (London, U.K.) 465 (7296), 329 (2010).ADSCrossRefGoogle Scholar
- 2.D. Pavlidis, Thema Forschung 2/2006 (Tech. Univ. Darmstadt, 2006), p. 38.Google Scholar
- 3.C. R. Bolognesi, R. Flückiger, M. Alexandrova, W. Quan, R. Lövblom, and O. Ostinelli, in Proceedings of the Electron Devices Meeting (IEDM)2016 (IEEE Int., 2016), p. 29–5.Google Scholar
- 4.Huiming Xu, PhD Thesis (Univ. of Illinois, Urbana-Champaign, IL, 2014).Google Scholar
- 5.J. Vyskočil, A. Hospodková, O. Petříček, J. Pangrác, M. Ziková, J. Oswald, and A. Vetushka, J. Cryst. Growth 464, 64 (2017).ADSCrossRefGoogle Scholar
- 6.P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi, and Y.-H. Zhang, Electron. Lett. 39, 987 (2003).CrossRefGoogle Scholar
- 7.Yu-An Liao, Yi-Kai Chao, Shu-Wei Chang, Wen-Hao Chang, Jen-Inn Chyi, and Shih-Yen Lin, Appl. Phys. Lett. 103, 143502 (2013).ADSCrossRefGoogle Scholar
- 8.D. Ren, L. Ahtapodov, J. S. Nilsen, J. Yang, A. Gustafsson, J. Huh, G. J. Conibeer, A. T. J. van Helvoort, B.-O. Fimland, and H. Weman, Nano Lett. 18, 2304 (2018).ADSCrossRefGoogle Scholar
- 9.Tao Yu et al., PhD Thesis (Massachusetts Inst. Technol. 2016).Google Scholar
- 10.P. K. Kasanaboina, S. K. Ojha, Sh. U. Sami, L. Reynolds, Y. Liu, and Sh. Iyer, Proc. SPIE 9373, 937307–1 (2015).CrossRefGoogle Scholar
- 11.A. K. Singh, A. Rathi, Md. Riyaj, G. Bhardwaj, and P. A. Alvi, Superlatt. Microstruct. 111, 591 (2017).ADSCrossRefGoogle Scholar
- 12.C. H. Pan and C. P. Lee, J. Appl. Phys. 113, 043112 (2013).ADSCrossRefGoogle Scholar
- 13.A. K. Singh, Md. Riyaj, S. G. Anjum, N. Yadav, A. Rathi, M. J. Siddiqui, and P. A. Alvi, Superlatt. Microstruct. 98, 406 (2016).ADSCrossRefGoogle Scholar
- 14.J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, Appl. Phys. Lett. 73, 2799 (1998).ADSCrossRefGoogle Scholar
- 15.R. Dolia, G. Bhardwaj, A. K. Singh, Sh. Kumar, and P. A. Alvi, Superlatt. Microstruct. 112, 507 (2017).ADSCrossRefGoogle Scholar
- 16.H. K. Nirmal, N. Yadav, S. Dalela, A. Rathi, M. J. Siddiqui, and P. A. Alvi, Phys. E (Amsterdam, Neth.) 80, 36 (2016).Google Scholar
- 17.R. S. Smith and I. G. Eddison, Adv. Mater. 4, 786 (1992).CrossRefGoogle Scholar
- 18.B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkötter, M. Kaniber, G. Abstreiter, et al., Nano Lett. 16, 152 (2015).ADSCrossRefGoogle Scholar
- 19.Ch.-A. Chang, R. Ludeke, L. L. Chang, and L. Esaki, Appl. Phys. Lett. 31, 759 (1977).ADSCrossRefGoogle Scholar
- 20.D. Huang, J. Chyi, J. Klem, and H. Morkoc, J. Appl. Phys. 63, 5859 (1988).ADSCrossRefGoogle Scholar
- 21.R. Roucka, J. Tolle, B. Forrest, J. Kouvetakis, V. R. D’Costa, and J. Menéndez, J. Appl. Phys. 101, 013518 (2007).ADSCrossRefGoogle Scholar
- 22.H. P. Hsu, J. K. Huang, Y. S. Huang, Y. T. Lin, H. H. Lin, and K. K. Tiong, Mater. Chem. Phys. 124, 558 (2010).CrossRefGoogle Scholar
- 23.T. Zederbauer, A. M. Andrews, D. MacFarland, H. Detz, W. Schrenk, and G. Strasser, APL Mater. 5, 035501 (2017).ADSCrossRefGoogle Scholar
- 24.T. S. Wang, J. T. Tsai, K. I. Lin, J.-Sh. Hwang, H. H. Lin, and L. C. Chou, Mater. Sci. Eng. B 147, 131 (2008).CrossRefGoogle Scholar
- 25.N. Argaman and G. Makov, Am. J. Phys. 68, 69 (2000).ADSCrossRefGoogle Scholar
- 26.W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).CrossRefGoogle Scholar
- 27.K. Capelle, Braz. J. Phys. A 36, 1318 (2006).ADSCrossRefGoogle Scholar
- 28.K. Schwarz, P. Blaha, and S. B. Trickey, Mol. Phys. 108, 3147 (2010).ADSCrossRefGoogle Scholar
- 29.K. Schwarz and P. Blaha, in Practical Aspects of Computational Chemistry I, Ed. by J. Leszczynski, K. Shukla, and K. Manoj (Springer, Netherlands, 2011), p. 191.Google Scholar
- 30.F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).ADSCrossRefGoogle Scholar
- 31.W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).ADSCrossRefGoogle Scholar
- 32.J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
- 33.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
- 34.A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).ADSCrossRefGoogle Scholar
- 35.K. M. Wong, S. M. Alay-e Abbas, A. Shaukat, and Y. Lei, Solid State Sci. 18, 24 (2013).ADSCrossRefGoogle Scholar
- 36.H. Q. Yang, T. L. Song, X. X. Liang, and G. J. Zhao, J. Phys.: Conf. Ser. 574, 012048 (2015).Google Scholar
- 37.A. H. Reshak, RSC Adv. 6, 72286 (2016).CrossRefGoogle Scholar
- 38.I. Khan, I. Ahmad, H. A. Rahnamaye Aliabad, and M. Maqbool, Mater. Today: Proc. 2, 5122 (2015).Google Scholar
- 39.Sh. Namjoo, A. S. H. Rozatian, I. Jabbari, and P. Puschnig, Phys. Rev. B 91, 205205 (2015).ADSCrossRefGoogle Scholar
- 40.O. Rubel, A. Bokhanchuk, S. J. Ahmed, and E. Assmann, Phys. Rev. B 90, 115202 (2014).ADSCrossRefGoogle Scholar
- 41.N. Souza Dantas, J. S. de Almeida, R. Ahuja, C. Persson, and A. Ferreira da Silva, Appl. Phys. Lett. 92, 121914 (2008).ADSCrossRefGoogle Scholar
- 42.S. Bagci and B. G. Yalcin, Acta Phys. Polon. A 128, B97 (2015).CrossRefGoogle Scholar
- 43.E. López-Apreza, J. Arriaga, and D. Olguín, Rev. Mex. Fis. 56, 183 (2010).Google Scholar
- 44.A. Laref, A. Al Mudlej, S. Laref, J. T. Yang, Y.-Ch. Xiong, and Sh. J. Luo, Materials 10, 766 (2017).ADSCrossRefGoogle Scholar
- 45.P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).ADSCrossRefGoogle Scholar
- 46.G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B 64, 195134 (2001).ADSCrossRefGoogle Scholar
- 47.M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).ADSCrossRefGoogle Scholar
- 48.E. Sjöstedt, L. Nordström, and D. J. Singh, Solid State Commun. 114, 15 (2000).ADSCrossRefGoogle Scholar
- 49.J. P. Bevington, PhD Thesis (Washington State Univ. 2011).Google Scholar
- 50.S. Cottenier, Inst. Kern-en Stralingsfys. 4 (0), 41 (2002).Google Scholar
- 51.O. K. Andersen, Phys. Rev. B 12, 3060 (1975).ADSCrossRefGoogle Scholar
- 52.D. J. Singh and L. Nordström, Planewaves,Pseudopotentials, and the LAPW Method (Springer Science, New York, 2006).Google Scholar
- 53.J. C. Slater, Adv. Quantum Chem. 6, 1 (1972).ADSCrossRefGoogle Scholar
- 54.F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007).ADSGoogle Scholar
- 55.A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).ADSCrossRefGoogle Scholar
- 56.F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).ADSCrossRefGoogle Scholar
- 57.J. A. Camargo-Martinez and R. Baquero, Rev. Mex. Fis. 59, 453 (2013).Google Scholar
- 58.H. Dixit, R. Saniz, S. Cottenier, D. Lamoen, and B. Partoens, J. Phys.: Condens. Matter 24, 205503 (2012).ADSGoogle Scholar
- 59.S. Talreja and B. L. Ahuja, Opt. Mater. 46, 70 (2015).ADSCrossRefGoogle Scholar
- 60.J. A. Camargo-Martínez and R. Baquero, Superfic. Vacio 26, 54 (2013).Google Scholar
- 61.F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).ADSCrossRefGoogle Scholar
- 62.J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).ADSCrossRefGoogle Scholar
- 63.M. E. Straumanis and C. D. Kim, J. Appl. Phys. 36, 3822 (1965).ADSCrossRefGoogle Scholar
- 64.J. C. Slater, Phys. Rev. 51, 846 (1937).ADSCrossRefGoogle Scholar
- 65.J. C. Slater, Adv. Quantum Chem. 1, 35 (1964).ADSMathSciNetCrossRefGoogle Scholar
- 66.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
- 67.P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).ADSCrossRefGoogle Scholar
- 68.Z. Zanolli and U. von Barth, cond-mat/0610066 (2006).Google Scholar
- 69.K. Al-Ammar, H. R. Jappor, and F. S. Hashim, Anno 67, 287 (2012).Google Scholar
- 70.Y. I. Diakite, S. D. Traore, Y. Malozovsky, B. Khamala, L. Franklin, and D. Bagayoko, arXiv:1601.05300 (2016).Google Scholar
- 71.Ph. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009).ADSCrossRefGoogle Scholar
- 72.C. Pashartis and O. Rubel, Phys. Rev. Appl. 7, 064011 (2017).ADSCrossRefGoogle Scholar
- 73.I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
- 74.M. F. Gratton and J. C. Woolley, J. Electron. Mater. 2, 455 (1973).ADSCrossRefGoogle Scholar
- 75.N. Tit, N. Amrane, and A. H. Reshak, Cryst. Res. Technol. 45, 59 (2010).CrossRefGoogle Scholar
- 76.N. Tit, N. Amrane, and A. H. Reshak, J. Electron. Mater. 39, 178 (2010).ADSCrossRefGoogle Scholar
- 77.A. Belabbes, A. Zaoui, and M. Ferhat, Mater. Sci. Eng. B 137, 210 (2007).CrossRefGoogle Scholar
- 78.R. E. Nahory, M. A. Pollack, J. C. DeWinter, and K. M. Williams, J. Appl. Phys. 48, 1607 (1977).ADSCrossRefGoogle Scholar
- 79.M. B. Thomas, W. M. Coderre, and J. C. Woolley, Phys. Status Solidi A 2 (3) (1970).Google Scholar
- 80.B. P. Gorman, A. G. Norman, R. Lukic-Zrnic, C. L. Littler, H. R. Moutinho, T. D. Golding, and A. G. Birdwell, J. Appl. Phys. 97, 063701 (2005).ADSCrossRefGoogle Scholar
- 81.Y.-S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, Phys. Rev. B 82, 205212 (2010).ADSCrossRefGoogle Scholar
- 82.J. S. Hwang, J. T. Tsai, I. C. Su, H. C. Lin, Y. T. Lu, P. C. Chiu, and J. I. Chyi, Appl. Phys. Lett. 100, 222104 (2012).ADSCrossRefGoogle Scholar
- 83.J. A. Camargo-Martínez and R. Baquero, Phys. Rev. B 86, 195106 (2012).ADSCrossRefGoogle Scholar
- 84.Y. Wang, H. Yin, R. Cao, F. Zahid, Y. Zhu, L. Liu, J. Wang, and H. Guo, Phys. Rev. B 87, 235203 (2013).ADSCrossRefGoogle Scholar
- 85.H. Kunihiro, T. Natsuhara, X. Gao, T. Uetsuji, and W. Susaki, in Proceedings of the Conference on Compound Semiconductors 2004: Compound Semiconductors for Quantum Science and Nanostructures (2005), p. 9.Google Scholar
- 86.S. Jain, M. Willander, and R. van Overstraeten, Compound Semiconductors Strained Layers and Devices (Springer Science, New York, 2013), Vol. 7.Google Scholar
- 87.G. P. Donati, R. Kaspi, and K. J. Malloy, J. Appl. Phys. 94, 5814 (2003).ADSCrossRefGoogle Scholar
- 88.L. Vegard, Zeitschr. Phys. 5, 17 (1921).ADSCrossRefGoogle Scholar