Advertisement

Semiconductors

, Volume 53, Issue 12, pp 1584–1592 | Cite as

First-Principles Investigation of Electronic Properties of GaAsxSb1 –x Ternary Alloys

  • A. K. Singh
  • Devesh Chandra
  • Sandhya Kattayat
  • Shalendra Kumar
  • P. A. AlviEmail author
  • Amit Rathi
ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • 1 Downloads

Abstract

Compositional variations in GaAs based ternary alloys have exhibited wide range alterations in electronic properties. In the present paper, first-principles study of GaAsxSb1 – x ternary alloys have been presented and discussed. Density functional theory (DFT) computation based on the full-potential (linearized) augmented plane-wave (FP-LAPW) method has been utilized to calculate the Density of States (DOS) and the band structure of ternary alloys GaAsxSb1 – x (x = 0, 0.25, 0.50, 0.75, 1). The calculations were performed using the exchange-correlation energy functional from Perdew, Burke, and Ernzerhof, a generalized-gradient approximation (GGAPBE) and Becke-Johnson exchange potential with local-density approximation (BJLDA) available within the framework of WIEN2k code. As compared to PBE, the results obtained from BJLDA are in close agreement with other experimental works. The DOS results show a reduction in bandgap as the Sb fraction is increased in GaAsxSb1 – x ternary alloys. The bandgap obtained by PBE and BJLDA are found to deviate from Vegard’s law, i.e., it doesn’t vary linearly with composition. However, the bandgap obtained by BJLD is found to closely match Vegard’s law when the bowing parameter is considered.

Keywords:

GaAsSb ternary DOS LAPW PBE Becke-Johnson potential 

Notes

ACKNOWLEDGMENTS

Authors are thankful to Prof. Karlheinz Schwarz and Dr. Peter Blaha (TU Wien, Getreidemarkt 9/165TC, A-1060 Vienna, AUSTRIA) for the WIEN2k software package. Amit Rathi and A.K. Singh acknowledge the financial support from Manipal University Jaipur, Jaipur 303007, Rajasthan, India under Project Seed Grant: MUJ/REGR/1467/13. P.A. Alvi is also grateful to “Banasthali Centre for Research and Education in Basic Sciences” under CURIE programme supported by the DST, Government of India, New Delhi.

REFERENCES

  1. 1.
    J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, et al., Nature (London, U.K.) 465 (7296), 329 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    D. Pavlidis, Thema Forschung 2/2006 (Tech. Univ. Darmstadt, 2006), p. 38.Google Scholar
  3. 3.
    C. R. Bolognesi, R. Flückiger, M. Alexandrova, W. Quan, R. Lövblom, and O. Ostinelli, in Proceedings of the Electron Devices Meeting (IEDM)2016 (IEEE Int., 2016), p. 29–5.Google Scholar
  4. 4.
    Huiming Xu, PhD Thesis (Univ. of Illinois, Urbana-Champaign, IL, 2014).Google Scholar
  5. 5.
    J. Vyskočil, A. Hospodková, O. Petříček, J. Pangrác, M. Ziková, J. Oswald, and A. Vetushka, J. Cryst. Growth 464, 64 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi, and Y.-H. Zhang, Electron. Lett. 39, 987 (2003).CrossRefGoogle Scholar
  7. 7.
    Yu-An Liao, Yi-Kai Chao, Shu-Wei Chang, Wen-Hao Chang, Jen-Inn Chyi, and Shih-Yen Lin, Appl. Phys. Lett. 103, 143502 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    D. Ren, L. Ahtapodov, J. S. Nilsen, J. Yang, A. Gustafsson, J. Huh, G. J. Conibeer, A. T. J. van Helvoort, B.-O. Fimland, and H. Weman, Nano Lett. 18, 2304 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    Tao Yu et al., PhD Thesis (Massachusetts Inst. Technol. 2016).Google Scholar
  10. 10.
    P. K. Kasanaboina, S. K. Ojha, Sh. U. Sami, L. Reynolds, Y. Liu, and Sh. Iyer, Proc. SPIE 9373, 937307–1 (2015).CrossRefGoogle Scholar
  11. 11.
    A. K. Singh, A. Rathi, Md. Riyaj, G. Bhardwaj, and P. A. Alvi, Superlatt. Microstruct. 111, 591 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    C. H. Pan and C. P. Lee, J. Appl. Phys. 113, 043112 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. K. Singh, Md. Riyaj, S. G. Anjum, N. Yadav, A. Rathi, M. J. Siddiqui, and P. A. Alvi, Superlatt. Microstruct. 98, 406 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, Appl. Phys. Lett. 73, 2799 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    R. Dolia, G. Bhardwaj, A. K. Singh, Sh. Kumar, and P. A. Alvi, Superlatt. Microstruct. 112, 507 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    H. K. Nirmal, N. Yadav, S. Dalela, A. Rathi, M. J. Siddiqui, and P. A. Alvi, Phys. E (Amsterdam, Neth.) 80, 36 (2016).Google Scholar
  17. 17.
    R. S. Smith and I. G. Eddison, Adv. Mater. 4, 786 (1992).CrossRefGoogle Scholar
  18. 18.
    B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkötter, M. Kaniber, G. Abstreiter, et al., Nano Lett. 16, 152 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    Ch.-A. Chang, R. Ludeke, L. L. Chang, and L. Esaki, Appl. Phys. Lett. 31, 759 (1977).ADSCrossRefGoogle Scholar
  20. 20.
    D. Huang, J. Chyi, J. Klem, and H. Morkoc, J. Appl. Phys. 63, 5859 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    R. Roucka, J. Tolle, B. Forrest, J. Kouvetakis, V. R. D’Costa, and J. Menéndez, J. Appl. Phys. 101, 013518 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    H. P. Hsu, J. K. Huang, Y. S. Huang, Y. T. Lin, H. H. Lin, and K. K. Tiong, Mater. Chem. Phys. 124, 558 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Zederbauer, A. M. Andrews, D. MacFarland, H. Detz, W. Schrenk, and G. Strasser, APL Mater. 5, 035501 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    T. S. Wang, J. T. Tsai, K. I. Lin, J.-Sh. Hwang, H. H. Lin, and L. C. Chou, Mater. Sci. Eng. B 147, 131 (2008).CrossRefGoogle Scholar
  25. 25.
    N. Argaman and G. Makov, Am. J. Phys. 68, 69 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).CrossRefGoogle Scholar
  27. 27.
    K. Capelle, Braz. J. Phys. A 36, 1318 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    K. Schwarz, P. Blaha, and S. B. Trickey, Mol. Phys. 108, 3147 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    K. Schwarz and P. Blaha, in Practical Aspects of Computational Chemistry I, Ed. by J. Leszczynski, K. Shukla, and K. Manoj (Springer, Netherlands, 2011), p. 191.Google Scholar
  30. 30.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).ADSCrossRefGoogle Scholar
  32. 32.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
  33. 33.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    K. M. Wong, S. M. Alay-e Abbas, A. Shaukat, and Y. Lei, Solid State Sci. 18, 24 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    H. Q. Yang, T. L. Song, X. X. Liang, and G. J. Zhao, J. Phys.: Conf. Ser. 574, 012048 (2015).Google Scholar
  37. 37.
    A. H. Reshak, RSC Adv. 6, 72286 (2016).CrossRefGoogle Scholar
  38. 38.
    I. Khan, I. Ahmad, H. A. Rahnamaye Aliabad, and M. Maqbool, Mater. Today: Proc. 2, 5122 (2015).Google Scholar
  39. 39.
    Sh. Namjoo, A. S. H. Rozatian, I. Jabbari, and P. Puschnig, Phys. Rev. B 91, 205205 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    O. Rubel, A. Bokhanchuk, S. J. Ahmed, and E. Assmann, Phys. Rev. B 90, 115202 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    N. Souza Dantas, J. S. de Almeida, R. Ahuja, C. Persson, and A. Ferreira da Silva, Appl. Phys. Lett. 92, 121914 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    S. Bagci and B. G. Yalcin, Acta Phys. Polon. A 128, B97 (2015).CrossRefGoogle Scholar
  43. 43.
    E. López-Apreza, J. Arriaga, and D. Olguín, Rev. Mex. Fis. 56, 183 (2010).Google Scholar
  44. 44.
    A. Laref, A. Al Mudlej, S. Laref, J. T. Yang, Y.-Ch. Xiong, and Sh. J. Luo, Materials 10, 766 (2017).ADSCrossRefGoogle Scholar
  45. 45.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).ADSCrossRefGoogle Scholar
  46. 46.
    G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B 64, 195134 (2001).ADSCrossRefGoogle Scholar
  47. 47.
    M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).ADSCrossRefGoogle Scholar
  48. 48.
    E. Sjöstedt, L. Nordström, and D. J. Singh, Solid State Commun. 114, 15 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    J. P. Bevington, PhD Thesis (Washington State Univ. 2011).Google Scholar
  50. 50.
    S. Cottenier, Inst. Kern-en Stralingsfys. 4 (0), 41 (2002).Google Scholar
  51. 51.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).ADSCrossRefGoogle Scholar
  52. 52.
    D. J. Singh and L. Nordström, Planewaves,Pseudopotentials, and the LAPW Method (Springer Science, New York, 2006).Google Scholar
  53. 53.
    J. C. Slater, Adv. Quantum Chem. 6, 1 (1972).ADSCrossRefGoogle Scholar
  54. 54.
    F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007).ADSGoogle Scholar
  55. 55.
    A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).ADSCrossRefGoogle Scholar
  56. 56.
    F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).ADSCrossRefGoogle Scholar
  57. 57.
    J. A. Camargo-Martinez and R. Baquero, Rev. Mex. Fis. 59, 453 (2013).Google Scholar
  58. 58.
    H. Dixit, R. Saniz, S. Cottenier, D. Lamoen, and B. Partoens, J. Phys.: Condens. Matter 24, 205503 (2012).ADSGoogle Scholar
  59. 59.
    S. Talreja and B. L. Ahuja, Opt. Mater. 46, 70 (2015).ADSCrossRefGoogle Scholar
  60. 60.
    J. A. Camargo-Martínez and R. Baquero, Superfic. Vacio 26, 54 (2013).Google Scholar
  61. 61.
    F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).ADSCrossRefGoogle Scholar
  62. 62.
    J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).ADSCrossRefGoogle Scholar
  63. 63.
    M. E. Straumanis and C. D. Kim, J. Appl. Phys. 36, 3822 (1965).ADSCrossRefGoogle Scholar
  64. 64.
    J. C. Slater, Phys. Rev. 51, 846 (1937).ADSCrossRefGoogle Scholar
  65. 65.
    J. C. Slater, Adv. Quantum Chem. 1, 35 (1964).ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).ADSCrossRefGoogle Scholar
  68. 68.
    Z. Zanolli and U. von Barth, cond-mat/0610066 (2006).Google Scholar
  69. 69.
    K. Al-Ammar, H. R. Jappor, and F. S. Hashim, Anno 67, 287 (2012).Google Scholar
  70. 70.
    Y. I. Diakite, S. D. Traore, Y. Malozovsky, B. Khamala, L. Franklin, and D. Bagayoko, arXiv:1601.05300 (2016).Google Scholar
  71. 71.
    Ph. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009).ADSCrossRefGoogle Scholar
  72. 72.
    C. Pashartis and O. Rubel, Phys. Rev. Appl. 7, 064011 (2017).ADSCrossRefGoogle Scholar
  73. 73.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
  74. 74.
    M. F. Gratton and J. C. Woolley, J. Electron. Mater. 2, 455 (1973).ADSCrossRefGoogle Scholar
  75. 75.
    N. Tit, N. Amrane, and A. H. Reshak, Cryst. Res. Technol. 45, 59 (2010).CrossRefGoogle Scholar
  76. 76.
    N. Tit, N. Amrane, and A. H. Reshak, J. Electron. Mater. 39, 178 (2010).ADSCrossRefGoogle Scholar
  77. 77.
    A. Belabbes, A. Zaoui, and M. Ferhat, Mater. Sci. Eng. B 137, 210 (2007).CrossRefGoogle Scholar
  78. 78.
    R. E. Nahory, M. A. Pollack, J. C. DeWinter, and K. M. Williams, J. Appl. Phys. 48, 1607 (1977).ADSCrossRefGoogle Scholar
  79. 79.
    M. B. Thomas, W. M. Coderre, and J. C. Woolley, Phys. Status Solidi A 2 (3) (1970).Google Scholar
  80. 80.
    B. P. Gorman, A. G. Norman, R. Lukic-Zrnic, C. L. Littler, H. R. Moutinho, T. D. Golding, and A. G. Birdwell, J. Appl. Phys. 97, 063701 (2005).ADSCrossRefGoogle Scholar
  81. 81.
    Y.-S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, Phys. Rev. B 82, 205212 (2010).ADSCrossRefGoogle Scholar
  82. 82.
    J. S. Hwang, J. T. Tsai, I. C. Su, H. C. Lin, Y. T. Lu, P. C. Chiu, and J. I. Chyi, Appl. Phys. Lett. 100, 222104 (2012).ADSCrossRefGoogle Scholar
  83. 83.
    J. A. Camargo-Martínez and R. Baquero, Phys. Rev. B 86, 195106 (2012).ADSCrossRefGoogle Scholar
  84. 84.
    Y. Wang, H. Yin, R. Cao, F. Zahid, Y. Zhu, L. Liu, J. Wang, and H. Guo, Phys. Rev. B 87, 235203 (2013).ADSCrossRefGoogle Scholar
  85. 85.
    H. Kunihiro, T. Natsuhara, X. Gao, T. Uetsuji, and W. Susaki, in Proceedings of the Conference on Compound Semiconductors 2004: Compound Semiconductors for Quantum Science and Nanostructures (2005), p. 9.Google Scholar
  86. 86.
    S. Jain, M. Willander, and R. van Overstraeten, Compound Semiconductors Strained Layers and Devices (Springer Science, New York, 2013), Vol. 7.Google Scholar
  87. 87.
    G. P. Donati, R. Kaspi, and K. J. Malloy, J. Appl. Phys. 94, 5814 (2003).ADSCrossRefGoogle Scholar
  88. 88.
    L. Vegard, Zeitschr. Phys. 5, 17 (1921).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. K. Singh
    • 1
  • Devesh Chandra
    • 1
  • Sandhya Kattayat
    • 2
  • Shalendra Kumar
    • 3
  • P. A. Alvi
    • 4
    Email author
  • Amit Rathi
    • 1
  1. 1.School of Electrical, Electronics and Communication Engineering, Manipal University JaipurRajasthanIndia
  2. 2.Higher Colleges of TechnologyAbu DhabiUnited Arab Emirates
  3. 3.Electronic Materials and Nanomagnetism Lab, Department of Applied Physics, Amity School of Applied Sciences, Amity University HaryanaGurgaonIndia
  4. 4.Department of Physics, Banasthali VidyapithRajasthanIndia

Personalised recommendations