Advertisement

Semiconductors

, Volume 53, Issue 12, pp 1617–1621 | Cite as

Electron–Phonon Interaction in Quantum Wells Based on Uniaxial Materials

  • A. Yu. Maslov
  • O. V. ProshinaEmail author
SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

Abstract

The interaction of charged particles with interface optical phonons in quantum wells composed of uniaxially symmetric materials is studied theoretically. It is shown that the character of this interaction depends considerably on the degree of anisotropy of the phonon spectrum in the materials forming the quantum well and the barriers. In the case of strong anisotropy, the interaction turns out to be significantly weaker than it is in similar structures made of materials with cubic symmetry. In the case of weak phonon anisotropy, the interaction of charged particles with optical phonons can under certain conditions be described by a Fröhlich-type coupling constant, and both weak and strong electron–phonon interaction can take place in different structures. The results obtained extend the possibilities of the optical diagnostics of quantum nanostructures.

Keywords:

quantum well uniaxial materials interface optical phonons electron–phonon interaction polaron 

Notes

CONFLICT OF INTERESTS

The authors declare no conflict of interests.

REFERENCES

  1. 1.
    Z. Wang, K. Reinhardt, M. Dutta, and M. A. Stroscio, in Length-Scale Dependent Phonon Interactions, Ed. by S. L. Shindé and G. P. Srivastava (Springer, New York, 2014).Google Scholar
  2. 2.
    B. K. Ridley, Hybrid Phonons in Nanostructures (Oxford Univ. Press, UK, 2017).CrossRefGoogle Scholar
  3. 3.
    A. Yu. Maslov and O. V. Proshina, Semiconductors 44, 189 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. Yu. Maslov and O. V. Proshina, Semiconductors 49, 1344 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Imanaka, T. Takamasu, H. Tampo, H. Shibata, and S. Niki, Phys. Status Solidi C 7, 1599 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    P. I. Kuznetsov, V. A. Jitov, G. G. Yakushcheva, B. S. Shchamkhalov, L. Yu. Zakharov, V. I. Kozlovsky, Ya. K. Skasyrsky, K. P. O’Donnell, and C. Trager-Cowan, Phys. E (Amsterdam, Neth.) 17, 516 (2003).Google Scholar
  7. 7.
    M. Lopez-Ponce, A. Nakamura, M. Suzuki, J. Temmyo, S. Agouram, M. C. Martínez-Tomás, V. Muñoz-Sanjosé, P. Lefebvre, J. M. Ulloa, E. Muñoz, and A. Hierro, Nanotechnology 25, 255202 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Wang, K. Reinhardt, M. Dutta, and M. A. Stroscio, in Length-Scale Dependent Phonon Interactions, Ed. by S. L. Shindé and G. P. Srivastava (Springer Science, New York, 2014), Chap. 2.Google Scholar
  10. 10.
    A. Yu. Maslov and O. V. Proshina, in Phonons in Low Dimensional Structures, Ed. by V. N. Stavrou (Intech Open, London, UK, 2018), Chap. 1, p. 3.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations