Excitonic Effects and Impurity–Defect Emission in GaAs/AlGaAs Structures Used for the Production of Mid-IR Photodetectors
- 9 Downloads
Abstract
A series of undoped GaAs/AlxGa1 –xAs multiple quantum well heterostructures, whose doped analogs are used for the production of photodetectors operating in the spectral range 8–12 μm, is fabricated by molecular-beam epitaxy. For the heterostructures, the spectral position of absorption lines corresponding to the allowed transitions between quantum-confined electron and hole levels in GaAs layers is established. The influence of impurity–defect states on the luminescence and absorption spectra of quantum wells is studied. The excitonic corrections for the allowed transitions are determined in relation to the quantum-well width and the aluminum content in the barrier layers. The role of excitonic effects in restoring the structure of single-electron states from interband-absorption spectra (luminescence-excitation spectra) and the relationship between these states and the working region of IR photodetectors based on GaAs/AlxGa1 –xAs quantum wells are discussed.
Keywords:
quantum well luminescence exciton IR detectorNotes
FUNDING
The study was supported by the Russian Foundation for Basic Research, project no. 18-29-20122-mk.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES
- 1.A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017).ADSCrossRefGoogle Scholar
- 2.S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Advances in Infrared Photodetectors in Semiconductors and Semimetals (Academic, New York, 2011).Google Scholar
- 3.H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, Berlin, 2007).Google Scholar
- 4.H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, Appl. Phys. Lett. 113, 171107 (2018).ADSCrossRefGoogle Scholar
- 5.S. V. Bandara, S. D. Gunapala, J. K. Liu, E. M. Luong, J. M. Mumolo, W. Hong, D. K. Sengupta, and M. J. McKelvey, Appl. Phys. Lett. 72, 2427 (1998).ADSCrossRefGoogle Scholar
- 6.M. Helm, Semicond. Semimet. 62, 1 (1999).CrossRefGoogle Scholar
- 7.B. F. Levine, J. Appl. Phys. 74, R1 (1993).ADSMathSciNetCrossRefGoogle Scholar
- 8.K. K. Choi, D. P. Forrai, D. W. Endre, and J. Sun, IEEE J. Quant. Electron. 45, 1255 (2009).ADSCrossRefGoogle Scholar
- 9.A. Nedelcu, Y. Creten, V. Guériaux, A. Berurier, V. Bria, N. B. l’Isle, and C. V. Hoof, Proc. SPIE 7826, 78261K (2010).ADSCrossRefGoogle Scholar
- 10.P. B. Vigneron, S. Pirotta, I. Carusotto, N. L. Tran, G. Biasiol, J. M. Manceau, A. Bousseksou, and R. Colombelli, Appl. Phys. Lett. 114, 131104 (2019).ADSCrossRefGoogle Scholar
- 11.K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olve, Appl. Phys. Lett. 103, 201113 (2013).ADSCrossRefGoogle Scholar
- 12.W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).ADSCrossRefGoogle Scholar
- 13.Z. H. Chen, S. Hellström, Z. Y. Yu, M. Qiu, and Y. Fu, Appl. Phys. Lett. 100, 043502 (2012).ADSCrossRefGoogle Scholar
- 14.L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and L. G. Hu, Sci. Rep. 4, 3914 (2014).CrossRefGoogle Scholar
- 15.Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, Nat. Commun. 2, 579 (2011).ADSCrossRefGoogle Scholar
- 16.D. V. Kazantsev and E. A. Kazantseva, JETP Lett. 107, 512 (2018).ADSCrossRefGoogle Scholar
- 17.D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, Phys. Usp. 60, 259 (2017).ADSCrossRefGoogle Scholar
- 18.C. F. Klingshirn, Semiconductor Optics (Springer Science, New York, 2012).CrossRefGoogle Scholar
- 19.J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).ADSCrossRefGoogle Scholar
- 20.V. S. Krivobok, S. N. Nikolaev, V. S. Bagaev, A. A. Pruchkina, E. E. Onishchenko, S. A. Kolosov, Yu. V. Klevkov, and M. L. Skorikov, J. Appl. Phys. 119, 055704 (2016).ADSCrossRefGoogle Scholar
- 21.V. S. Krivobok, S. N. Nikolaev, S. I. Chentsov, E. E. Onishchenko, V. S. Bagaev, V. I. Kozlovskii, S. V. Sorokin, I. V. Sedova, S. V. Gronin, and S. V. Ivanov, JETP Lett. 104, 110 (2016).ADSCrossRefGoogle Scholar
- 22.N. R. Jungwirth, H. S. Chang, M. Jiang, and G. D. Fuchs, ACS Nano 10, 1210 (2016).CrossRefGoogle Scholar
- 23.V. S. Krivobok, S. N. Nikolaev, S. I. Chentsov, E. E. Onishchenko, A. A. Pruchkina, V. S. Bagaev, A. A. Silina, and N. A. Smirnova, J. Lumin. 200, 240 (2018).CrossRefGoogle Scholar
- 24.H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B 46, 4092 (1992).ADSCrossRefGoogle Scholar