, Volume 53, Issue 12, pp 1608–1616 | Cite as

Excitonic Effects and Impurity–Defect Emission in GaAs/AlGaAs Structures Used for the Production of Mid-IR Photodetectors

  • V. S. Krivobok
  • D. A. Litvinov
  • S. N. Nikolaev
  • E. E. Onishchenko
  • D. A. Pashkeev
  • M. A. Chernopittsky
  • L. N. Grigor’evaEmail author


A series of undoped GaAs/AlxGa1 –xAs multiple quantum well heterostructures, whose doped analogs are used for the production of photodetectors operating in the spectral range 8–12 μm, is fabricated by molecular-beam epitaxy. For the heterostructures, the spectral position of absorption lines corresponding to the allowed transitions between quantum-confined electron and hole levels in GaAs layers is established. The influence of impurity–defect states on the luminescence and absorption spectra of quantum wells is studied. The excitonic corrections for the allowed transitions are determined in relation to the quantum-well width and the aluminum content in the barrier layers. The role of excitonic effects in restoring the structure of single-electron states from interband-absorption spectra (luminescence-excitation spectra) and the relationship between these states and the working region of IR photodetectors based on GaAs/AlxGa1 –xAs quantum wells are discussed.


quantum well luminescence exciton IR detector 



The study was supported by the Russian Foundation for Basic Research, project no. 18-29-20122-mk.


The authors declare that they have no conflict of interest.


  1. 1.
    A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Advances in Infrared Photodetectors in Semiconductors and Semimetals (Academic, New York, 2011).Google Scholar
  3. 3.
    H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, Berlin, 2007).Google Scholar
  4. 4.
    H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, Appl. Phys. Lett. 113, 171107 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Bandara, S. D. Gunapala, J. K. Liu, E. M. Luong, J. M. Mumolo, W. Hong, D. K. Sengupta, and M. J. McKelvey, Appl. Phys. Lett. 72, 2427 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    M. Helm, Semicond. Semimet. 62, 1 (1999).CrossRefGoogle Scholar
  7. 7.
    B. F. Levine, J. Appl. Phys. 74, R1 (1993).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. K. Choi, D. P. Forrai, D. W. Endre, and J. Sun, IEEE J. Quant. Electron. 45, 1255 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. Nedelcu, Y. Creten, V. Guériaux, A. Berurier, V. Bria, N. B. l’Isle, and C. V. Hoof, Proc. SPIE 7826, 78261K (2010).ADSCrossRefGoogle Scholar
  10. 10.
    P. B. Vigneron, S. Pirotta, I. Carusotto, N. L. Tran, G. Biasiol, J. M. Manceau, A. Bousseksou, and R. Colombelli, Appl. Phys. Lett. 114, 131104 (2019).ADSCrossRefGoogle Scholar
  11. 11.
    K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olve, Appl. Phys. Lett. 103, 201113 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    Z. H. Chen, S. Hellström, Z. Y. Yu, M. Qiu, and Y. Fu, Appl. Phys. Lett. 100, 043502 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and L. G. Hu, Sci. Rep. 4, 3914 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, Nat. Commun. 2, 579 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    D. V. Kazantsev and E. A. Kazantseva, JETP Lett. 107, 512 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, Phys. Usp. 60, 259 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    C. F. Klingshirn, Semiconductor Optics (Springer Science, New York, 2012).CrossRefGoogle Scholar
  19. 19.
    J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    V. S. Krivobok, S. N. Nikolaev, V. S. Bagaev, A. A. Pruchkina, E. E. Onishchenko, S. A. Kolosov, Yu. V. Klevkov, and M. L. Skorikov, J. Appl. Phys. 119, 055704 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    V. S. Krivobok, S. N. Nikolaev, S. I. Chentsov, E. E. Onishchenko, V. S. Bagaev, V. I. Kozlovskii, S. V. Sorokin, I. V. Sedova, S. V. Gronin, and S. V. Ivanov, JETP Lett. 104, 110 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    N. R. Jungwirth, H. S. Chang, M. Jiang, and G. D. Fuchs, ACS Nano 10, 1210 (2016).CrossRefGoogle Scholar
  23. 23.
    V. S. Krivobok, S. N. Nikolaev, S. I. Chentsov, E. E. Onishchenko, A. A. Pruchkina, V. S. Bagaev, A. A. Silina, and N. A. Smirnova, J. Lumin. 200, 240 (2018).CrossRefGoogle Scholar
  24. 24.
    H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B 46, 4092 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Krivobok
    • 1
  • D. A. Litvinov
    • 1
  • S. N. Nikolaev
    • 1
  • E. E. Onishchenko
    • 1
  • D. A. Pashkeev
    • 1
    • 2
  • M. A. Chernopittsky
    • 1
  • L. N. Grigor’eva
    • 1
    Email author
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.RD and P Center “Orion”MoscowRussia

Personalised recommendations