Advertisement

Semiconductors

, Volume 53, Issue 12, pp 1705–1708 | Cite as

Ga(In)AsP Lateral Nanostructures as the Optical Component of GaAs-Based Photovoltaic Converters

  • L. B. KarlinaEmail author
  • A. S. Vlasov
  • M. Z. Shvarts
  • I. P. Soshnikov
  • I. P. Smirnova
  • F. E. Komissarenko
  • A. V. Ankudinov
PHYSICS OF SEMICONDUCTOR DEVICES

Abstract

The possibility of using lateral Ga(In)AsP nanostructures grown by the catalytic method in a quasi-closed volume from phosphorus and indium vapors on the GaAs (100) surface as an antireflection coating for photovoltaic devices is considered for the first time. It is shown that, at a fixed growth temperature, it is possible to control the surface morphology by changing the growth duration. The surface morphology is examined by scanning electron and atomic force microscopies. It is shown that the antireflection properties of the surface in the range 400–800 nm are related to its structure. The use of such a coating in GaAs-based photocells demonstrated a significant increase in the external quantum yield of photovoltaic converters.

Keywords:

nanostructures catalytic growth Ga(In)AsP antireflection coating 

Notes

CONFLICT OF INTEREST

The authors state that they have no conflict of interest.

REFERENCES

  1. 1.
    Progress in Advanced Structural and Functional Materials Design, Ed. by T. Kakeshita (Springer, Japan, 2013).Google Scholar
  2. 2.
    A. Bahrami, S. Mohammadnejad, N. J. Abkenar, and S. Soleimaninezhad, Int. J. Renewable Energy Res. 1, 79 (2013).Google Scholar
  3. 3.
    M. K. Hedayati and M. Elbahri, Materials 9, 497 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and W. P. Hsu, Nano Lett. 8, 1501 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Mater. Sci. Eng. Rep. 69, 1 (2010).CrossRefGoogle Scholar
  6. 6.
    J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).CrossRefGoogle Scholar
  7. 7.
    S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, Adv. Mater. 21, 973 (2009).CrossRefGoogle Scholar
  8. 8.
    L. B. Karlina, A. S. Vlasov, I. P. Soshnikov, I. P. Smirnova, B. Ya. Ber, and A. B. Smirnov, Semiconductors 52, 1363 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    L. B. Karlina, A. S. Vlasov, B. Y. Ber, and D. Y. Kazantsev, J. Cryst. Growth 432, 1338 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Z. Shvarts, A. E. Chalov, E. A. Ionova, V. R. Larionov, D. A. Malevskiy, V. D. Rumyantsev, and S. S. Titkov, in Proceedings of the 20th EUPVSEC, Barcelona,2005, p. 278.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. B. Karlina
    • 1
    Email author
  • A. S. Vlasov
    • 1
  • M. Z. Shvarts
    • 1
  • I. P. Soshnikov
    • 1
    • 2
  • I. P. Smirnova
    • 1
  • F. E. Komissarenko
    • 3
  • A. V. Ankudinov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Academic UniversitySt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations