Advertisement

Semiconductors

, Volume 53, Issue 12, pp 1578–1583 | Cite as

On the Characteristic Features of the Impurity Energy Spectrum in Arsenides

  • I. K. Kamiliov
  • M. I. Daunov
  • G. M. GajievEmail author
  • R. K. Arslanov
ELECTRONIC PROPERTIES OF SEMICONDUCTORS

Abstract

The impurity energy spectrum of undoped n-type GaAs, InAs, CdSnAs2, CdGeAs2, and CdTe, ZnO bulk crystals is studied based on a quantitative analysis of the baric and temperature dependences of the kinetic coefficients. It is found that the deep-level donor center corresponds to the intrinsic vacancy defect in the anion sublattice in the above-listed semiconductors. The conclusion on the nature of the donor center, i.e., the vacancy in the anion sublattice, is based on the fact that, in contrast to shallow impurity centers which trace the intrinsic band under uniform pressure, to which they are genetically related, the energy of deep impurity centers with respect to absolute vacuum remains constant under isotropic compression of the lattice. Therefore, it seems favorable to study the evolution of the carrier energy spectrum in semiconductors under uniform-pressure conditions. The energy-level positions with respect to the conduction-band edge and pressure coefficients of the energy gaps between them and the corresponding conduction-band bottom are determined. The shift of the energy level of the deep donor center to the conduction-band depth with decreasing band gap is observed.

Keywords:

deep levels hydrostatic pressure Brillouin zone arsenides pressure coefficient 

Notes

FUNDING

This study was performed within the State contract of the Institute of Physics of the Dagestan Federal Research Center, Russian Academy of Sciences, on Research into subjects АААА-А17-117021310361-0; АААА-А17-117021310366-5.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    O. Madelung, Physics of III–V Compounds (Mir, Moscow, 1967; Wiley, New York, 1964).Google Scholar
  2. 2.
    V. D. Prochukhan, in Proceedings of the 6th Winter School on Semiconductor Physics, Leningrad,1974, p. 280.Google Scholar
  3. 3.
    V. N. Brudnyi, Russ. Phys. J. 29, 650 (1986).Google Scholar
  4. 4.
    M. I. Daunov, I. K. Kamilov, and S. F. Gabibov, Semiconductors 35, 59 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. I. Daunov, I. K. Kamilov, A. B. Magomedov, and S. F. Gabibov, Phys. Status Solidi 235, 297 (2003).CrossRefGoogle Scholar
  6. 6.
    M. I. Daunov, I. K. Kamilov, and S. F. Gabibov, Phys. Solid State 46, 1825 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    I. K. Kamilov, S. F. Gabibov, M. I. Daunov, and A. Yu. Mollaev, Semiconductors 45, 1543 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    W. Paul, in Proceedings of the 9th International Conference on Semiconductors (Moscow, 1968), Vol. 1, p. 51.Google Scholar
  9. 9.
    V. A. Telejkin and K. B. Tolpigo, Semiconductors 16, 1337 (1982).Google Scholar
  10. 10.
    In-Hwan Chor and Y. Yu. Peter, Phys. Status Solidi B 211, 143 (1999).Google Scholar
  11. 11.
    M. I. Daunov, A. B. Magomedov, and V. I. Danilov, Ukr. Fiz. Zh. 37, 103 (1992).Google Scholar
  12. 12.
    M. I. Daunov, I. K. Kamilov, A. B. Magomedov, and A. Sh. Kirakosyan, Semiconductors 33, 31 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    M. I. Daunov, A. B. Magomedov, and V. I. Danilov, Sov. Phys. Semicond. 25, 282 (1991).Google Scholar
  14. 14.
    M. I. Daunov, I. K. Kamilov, and S. F. Gabibov, Dokl. Phys. 53, 115 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    B. M. Askerov, Kinetic Effects in Semiconductors (Nauka, Leningrad, 1970) p. 303 [in Russian].Google Scholar
  16. 16.
    A. Yu. Mollaev, R. K. Arslanov, L. A. Saipulaeva, S. F. Gabibov, and S. F. Marenkin, Fiz. Tekh. Vys. Davl. 11 (4), 61 (2001).Google Scholar
  17. 17.
    S. Das Sarma and A. Madhukar, Solid State Commun. 38, 183 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    A. Matulenes, J. Pozela, E. Shimulite, and V. Jutsene, in Semiconductor Electrons in Semiconductor, Ed. by J. Požela (Vil’nyus, Mokslas, 1980), Vol. 2, p. 141 [in Russian].Google Scholar
  19. 19.
    G. D. Pitt and J. Lees, Phys. Rev. B 2, 4144 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    N. A. Goryunova and Yu. A. Valov, A 2B 4C 52 Semiconductors (Sov. Radio, Moscow, 1974), p. 376 [in Russian].Google Scholar
  21. 21.
    M. I. Daunov, A. B. Magomedov, and A. E. Ramazanova, Russ. Phys. J. 29, 661 (1986).Google Scholar
  22. 22.
    G. F. Karavaev, G. Z. Krivaite, Yu. I. Polygalov, V. A. Chaldyshev, and A. Yu. Shileika, Sov. Phys. Semicond. 6, 1863 (1972).Google Scholar
  23. 23.
    Yu. I. Polygalov and A. S. Poplavnoi, Russ. Phys. J. 24, 1139 (1981).Google Scholar
  24. 24.
    A. Yu. Mollaev, I. K. Kamilov, M. I. Daunov, R. K. Arslanov, A. B. Magomedov, L. A. Saypulaeva, and S. F. Gabibov, High Press. Res. 26, 445 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    M. I. Daunov, A. B. Magomedov, and A. E. Ramazanova, Sov. Phys. Semicond. 19, 577 (1985).Google Scholar
  26. 26.
    L. Konczewicz, S. Porowski, and I. K. Polushina, High Temp.-High Press. 7, 716 (1975).Google Scholar
  27. 27.
    M. K. R. Vyas and G. D. Pitt, J. Phys. C: Solid State Phys. 7, 423 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    R. Bendorius, V. D. Prochukhan, and A. Sileika, Phys. Status Solidi B 53, 745 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    M. I. Daunov, A. S. Kovalev, A. Yu. Mollaev, and A. B. Magomedov, Semiconductors 45, 43 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    M. I. Daunov, R. K. Arslanov, M. M. Gajialiev, E. V. Kortunova, P. P. Khokhlachev, and P. P. Shvansky, Semiconductors 40, 1255 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. K. Kamiliov
    • 1
  • M. I. Daunov
    • 1
  • G. M. Gajiev
    • 1
    Email author
  • R. K. Arslanov
    • 1
  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia

Personalised recommendations