The Effect of Various Annealing Cooling Rates on Electrical and Morphological Properties of TiO2 Thin Films
- 5 Downloads
Abstract
This paper investigates the effect of various postannealing cooling rates on structural and electrical properties of Titanium Dioxide (TiO2) thin films. TiO2 thin films were deposited on a silicon substrate using DC magnetron sputtering technique. After annealing TiO2 thin films at 600°C, to investigate the effect of different cooling rates on TiO2 thin films, samples were cooled down from 600°C to room temperature under 3 different rates: 2°C/min, 6°C/min, and 8°C/min. The Surface morphology, crystal structure, and electrical properties of the samples were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and Four-point probe (FPP) techniques. It is found that the rate of decreasing temperature after annealing can affect the morphology structure and electrical resistivity of TiO2. The sample with 2°C/min cooling rate has the largest grain size and highest electrical resistivity, while the sample with 8°C/min cooling rate has the smallest grain size and lowest electrical resistivity.
Keywords:
TiO2 annealing electrical properties thin film cooling rateNotes
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES
- 1.B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 4317 (1978).CrossRefGoogle Scholar
- 2.B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 5985 (1978).CrossRefGoogle Scholar
- 3.G. Alsayyed, J. C. Doliveira, and P. Pichat, J. Photochem. Photobiol. A 58, 99 (1991).CrossRefGoogle Scholar
- 4.O. Carp, C. L. Huisman, and A. Reller, Prog. Solid State Chem. 32, 33 (2004).CrossRefGoogle Scholar
- 5.Z. Liu, P. Fang, S. Wang, Y. Gao, F. Chen, F. Zheng, Y. Liu, and Y. Dai, J. Mol. Catal. A: Chem. 363–364, 159 (2012).Google Scholar
- 6.A. V. Taborda, M. A. Brusa, and M. A. Grela, Appl. Catal. A 208, 419 (2001).CrossRefGoogle Scholar
- 7.S. K. Zhang, T. M. Wang, G. Xiang, et al., Vacuum 62, 361 (2001).ADSCrossRefGoogle Scholar
- 8.M. Radecka, K. Zakrzewska, H. Czternastek, et al., Appl. Surf. Sci. 65, 227 (1993).ADSCrossRefGoogle Scholar
- 9.N. H. Aljufairi, Energy 39, 6 (2012).CrossRefGoogle Scholar
- 10.P. Kajitvichyanukul, J. Ananpattarachai, and S. Pongpom, Sci. Technol. Adv. Mater. 6, 352 (2005).CrossRefGoogle Scholar
- 11.L. Castañda, a López-Suárez, and A. Tiburcio-Silver, J. Nanosci. Nanotechnol. 10, 1343 (2010).CrossRefGoogle Scholar
- 12.K. G. Grigorov, G. I. Grigorov, L. Drajeva, D. Bouchier, R. Sporken, and R. Caudano, Vacuum 51, 153 (1998).ADSCrossRefGoogle Scholar
- 13.S. Takeda, S. Suzuki, H. Odaka, et al., Thin Solid Films 392, 338 (2001).ADSCrossRefGoogle Scholar
- 14.F. Zhang, N. Huang, P. Yang, et al., Surf. Coat. Technol. 84, 476 (1996).CrossRefGoogle Scholar
- 15.T. Watanabe, S. Fukayama, M. Miyauchi, et al., J. Sol–Gel Sci. Technol. 19, 71 (2000).CrossRefGoogle Scholar
- 16.M. U. Snhail, G. M. Rao, and S. Mohan, J. Appl. Phys. 71, 1421 (1992).ADSCrossRefGoogle Scholar
- 17.A. M. Luís, M. C. Neves, M. H. Mendonça, and O. C. Monteiro, Mater. Chem. Phys. 125, 20 (2011).CrossRefGoogle Scholar
- 18.N. Barati, M. a F. Sani, H. Ghasemi, Z. Sadeghian, and S. M. M. Mirhoseini, Appl. Surf. Sci. 255, 8328 (2009).ADSCrossRefGoogle Scholar
- 19.D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).ADSCrossRefGoogle Scholar
- 20.A. Di Paola, M. Bellardita, and L. Palmisano, Catalysts 3, 36 (2013).CrossRefGoogle Scholar
- 21.L. Yang, M. Zhang, S. Shi, et al., Nanoscale Res. Lett. 9, 621 (2014).ADSCrossRefGoogle Scholar
- 22.V. M. Kalygina, V. M. Novikov, V. A. Petrova, O. P. Tolbanov, E. V. Chernikov, S. Yu. Tcupiy, and T. M. Yaskevich, Semiconductors 48, 961 (2014).ADSCrossRefGoogle Scholar
- 23.S. Biswas and A. Kumar Kar, Mater. Res. Express 5, 024006 (2018).ADSCrossRefGoogle Scholar
- 24.M. Hossain, M. F. Pervez, M. H. Mia, S. Tayyaba, M. Uddin, R. Ahamed, R. A. Khan, M. Hoq, M. A. Khan, and F. Ahmed, Mater. Sci.-Pol. 35, 868 (2017).ADSCrossRefGoogle Scholar
- 25.S. Sankar and K. G. Gopchandran, Cryst. Res. Technol. 44, 989 (2009).CrossRefGoogle Scholar
- 26.H. Lee et al., Jpn. J. Appl. Phys. 58, SBBF11 (2019).CrossRefGoogle Scholar
- 27.W. Yang et al., Semicond. Sci. Technol. 21, 1573 (2016).ADSCrossRefGoogle Scholar
- 28.B. M. John, S. W. Mugo, and J. M. Ngaruiya, J. Mater. Phys. Chem. 6, 43 (2018).Google Scholar
- 29.P. Mazzolini, T. Acarturk, D. Chrastina, U. Starke, C. S. Casari, G. Gregori, and A. L. Bassi, Adv. Electron. Mater. 2, 1500316 (2016).CrossRefGoogle Scholar
- 30.A. F. Khan, M. Mehmood, S. K. Durrani, M. L. Ali, and N. A. Rahim, Mater. Sci. Semicond. Process. 29, 161 (2015).CrossRefGoogle Scholar
- 31.L. Yang, M. Zhang, S. Shi, et al., Nanoscale Res. Lett. 9, 621 (2014).ADSCrossRefGoogle Scholar
- 32.M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki, and M. Hamidi, Opt. Mater. 32, 690 (2010).ADSCrossRefGoogle Scholar
- 33.P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974), p. 687.Google Scholar
- 34.R. Mechiakh, N. Ben Sedrine, J. Ben Naceur, and R. Chtourou, Surf. Coat. Technol. 206, 243 (2011).CrossRefGoogle Scholar
- 35.S. M. J. Akherat, M. Amin Karimi, V. Alizadehyazdi, S. Asalzadeh, and M. Spenko, J. Electrostat. 97, 58 (2019).Google Scholar
- 36.L. J. Vander Pauw, Philips Res. Rep. 13, 1 (1958).Google Scholar
- 37.N. R. Mathews et al., Sol. Energy 83, 1499 (2009).ADSCrossRefGoogle Scholar