, Volume 53, Issue 12, pp 1603–1607 | Cite as

The Effect of Various Annealing Cooling Rates on Electrical and Morphological Properties of TiO2 Thin Films

  • S. AsalzadehEmail author
  • K. Yasserian


This paper investigates the effect of various postannealing cooling rates on structural and electrical properties of Titanium Dioxide (TiO2) thin films. TiO2 thin films were deposited on a silicon substrate using DC magnetron sputtering technique. After annealing TiO2 thin films at 600°C, to investigate the effect of different cooling rates on TiO2 thin films, samples were cooled down from 600°C to room temperature under 3 different rates: 2°C/min, 6°C/min, and 8°C/min. The Surface morphology, crystal structure, and electrical properties of the samples were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and Four-point probe (FPP) techniques. It is found that the rate of decreasing temperature after annealing can affect the morphology structure and electrical resistivity of TiO2. The sample with 2°C/min cooling rate has the largest grain size and highest electrical resistivity, while the sample with 8°C/min cooling rate has the smallest grain size and lowest electrical resistivity.


TiO2 annealing electrical properties thin film cooling rate 



The authors declare that they have no conflict of interest.


  1. 1.
    B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 4317 (1978).CrossRefGoogle Scholar
  2. 2.
    B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 5985 (1978).CrossRefGoogle Scholar
  3. 3.
    G. Alsayyed, J. C. Doliveira, and P. Pichat, J. Photochem. Photobiol. A 58, 99 (1991).CrossRefGoogle Scholar
  4. 4.
    O. Carp, C. L. Huisman, and A. Reller, Prog. Solid State Chem. 32, 33 (2004).CrossRefGoogle Scholar
  5. 5.
    Z. Liu, P. Fang, S. Wang, Y. Gao, F. Chen, F. Zheng, Y. Liu, and Y. Dai, J. Mol. Catal. A: Chem. 363–364, 159 (2012).Google Scholar
  6. 6.
    A. V. Taborda, M. A. Brusa, and M. A. Grela, Appl. Catal. A 208, 419 (2001).CrossRefGoogle Scholar
  7. 7.
    S. K. Zhang, T. M. Wang, G. Xiang, et al., Vacuum 62, 361 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    M. Radecka, K. Zakrzewska, H. Czternastek, et al., Appl. Surf. Sci. 65, 227 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    N. H. Aljufairi, Energy 39, 6 (2012).CrossRefGoogle Scholar
  10. 10.
    P. Kajitvichyanukul, J. Ananpattarachai, and S. Pongpom, Sci. Technol. Adv. Mater. 6, 352 (2005).CrossRefGoogle Scholar
  11. 11.
    L. Castañda, a López-Suárez, and A. Tiburcio-Silver, J. Nanosci. Nanotechnol. 10, 1343 (2010).CrossRefGoogle Scholar
  12. 12.
    K. G. Grigorov, G. I. Grigorov, L. Drajeva, D. Bouchier, R. Sporken, and R. Caudano, Vacuum 51, 153 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    S. Takeda, S. Suzuki, H. Odaka, et al., Thin Solid Films 392, 338 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    F. Zhang, N. Huang, P. Yang, et al., Surf. Coat. Technol. 84, 476 (1996).CrossRefGoogle Scholar
  15. 15.
    T. Watanabe, S. Fukayama, M. Miyauchi, et al., J. Sol–Gel Sci. Technol. 19, 71 (2000).CrossRefGoogle Scholar
  16. 16.
    M. U. Snhail, G. M. Rao, and S. Mohan, J. Appl. Phys. 71, 1421 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Luís, M. C. Neves, M. H. Mendonça, and O. C. Monteiro, Mater. Chem. Phys. 125, 20 (2011).CrossRefGoogle Scholar
  18. 18.
    N. Barati, M. a F. Sani, H. Ghasemi, Z. Sadeghian, and S. M. M. Mirhoseini, Appl. Surf. Sci. 255, 8328 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    A. Di Paola, M. Bellardita, and L. Palmisano, Catalysts 3, 36 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Yang, M. Zhang, S. Shi, et al., Nanoscale Res. Lett. 9, 621 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    V. M. Kalygina, V. M. Novikov, V. A. Petrova, O. P. Tolbanov, E. V. Chernikov, S. Yu. Tcupiy, and T. M. Yaskevich, Semiconductors 48, 961 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    S. Biswas and A. Kumar Kar, Mater. Res. Express 5, 024006 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    M. Hossain, M. F. Pervez, M. H. Mia, S. Tayyaba, M. Uddin, R. Ahamed, R. A. Khan, M. Hoq, M. A. Khan, and F. Ahmed, Mater. Sci.-Pol. 35, 868 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    S. Sankar and K. G. Gopchandran, Cryst. Res. Technol. 44, 989 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Lee et al., Jpn. J. Appl. Phys. 58, SBBF11 (2019).CrossRefGoogle Scholar
  27. 27.
    W. Yang et al., Semicond. Sci. Technol. 21, 1573 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    B. M. John, S. W. Mugo, and J. M. Ngaruiya, J. Mater. Phys. Chem. 6, 43 (2018).Google Scholar
  29. 29.
    P. Mazzolini, T. Acarturk, D. Chrastina, U. Starke, C. S. Casari, G. Gregori, and A. L. Bassi, Adv. Electron. Mater. 2, 1500316 (2016).CrossRefGoogle Scholar
  30. 30.
    A. F. Khan, M. Mehmood, S. K. Durrani, M. L. Ali, and N. A. Rahim, Mater. Sci. Semicond. Process. 29, 161 (2015).CrossRefGoogle Scholar
  31. 31.
    L. Yang, M. Zhang, S. Shi, et al., Nanoscale Res. Lett. 9, 621 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki, and M. Hamidi, Opt. Mater. 32, 690 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974), p. 687.Google Scholar
  34. 34.
    R. Mechiakh, N. Ben Sedrine, J. Ben Naceur, and R. Chtourou, Surf. Coat. Technol. 206, 243 (2011).CrossRefGoogle Scholar
  35. 35.
    S. M. J. Akherat, M. Amin Karimi, V. Alizadehyazdi, S. Asalzadeh, and M. Spenko, J. Electrostat. 97, 58 (2019).Google Scholar
  36. 36.
    L. J. Vander Pauw, Philips Res. Rep. 13, 1 (1958).Google Scholar
  37. 37.
    N. R. Mathews et al., Sol. Energy 83, 1499 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics, Islamic Azad UniversityKarajIran

Personalised recommendations