Advertisement

Semiconductors

, Volume 53, Issue 12, pp 1597–1602 | Cite as

Features of the Temperature Dependences of the Photoconductivity of Organometallic CH3NH3PbI3 Perovskite Films

  • D. V. Amasev
  • A. R. Tameev
  • A. G. KazanskiiEmail author
SURFACES, INTERFACES, AND THIN FILMS
  • 2 Downloads

Abstract

The effect of temperature on the photoconductivity and its spectral dependence for thin films of organometallic CH3NH3PbI3 perovskite is studied. The measurements performed at temperatures below room temperature reveal the features of the change in the photoconductivity with temperature in the region of the phase transition from the tetragonal to orthorhombic structure (140–170 K). On the basis of analysis of the effect of temperature on the nature of the change in the spectral dependences of the photoconductivity in the phase-transition region, mechanisms are proposed, which clarify the observed change in the photoconductivity.

Keywords:

perovskites photoconductivity phase transition spectral dependence 

Notes

ACKNOWLEDGMENTS

We thank V. S. Krivobok for measuring the photoluminescence spectra.

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-23045 (experimental part) and project no. 18-32-00417 (analysis of the spectral dependences of the photoconductivity), as well as by the Ministry of Science and Higher Education of the Russian Federation (equipment).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, Nat. Energy 1, 16142 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    E. M. Hutter, M. C. Gélvez-Rueda, A. Osherov, V. Bulović, F. C. Grozema, S. D. Stranks, and T. J. Savenije, Nat. Mater. 16, 115 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    D. Li, G. Wang, H.-C. Cheng, C.-Y. Chen, H. Wu, Y. Liu, Y. Huang, and X. Duan, Nat. Commun. 7, 11330 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Jiang, A. M. Soufiani, A. Gentle, F. Huang, A. Ho-Baillie, and M. A. Green, Appl. Phys. Lett. 108, 061905 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    N. J. Jeon, T.-Y. Yang, H. H. Park, J. Seo, D. Y. Nam, D. Jeong, S. Hong, S. H. Kim, J. M. Cho, J. J. Jang, and J.-K. Lee, Appl. Phys. Lett. 114, 013903 (2019).ADSCrossRefGoogle Scholar
  6. 6.
    L. Q. Phuong, Yu. Nakaike, A. Wakamiya, and Yo. Kanemitsu, J. Phys. Chem. Lett. 7, 4905 (2016).CrossRefGoogle Scholar
  7. 7.
    K. Sveinbjörnsson, K. Aitola, X. Zhang, M. Pazoki, A. Hagfeldt, G. Boschloo, and E. M. J. Johansson, J. Phys. Chem. Lett. 6, 4259 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Pisoni, J. Jacimovic, B. Náfrádi, P. Szirmai, M. Spina, R. Gaál, K. Holczer, E. Tutis, L. Forró, and E. Horváth, arXiv:1604.05637 (2016).Google Scholar
  9. 9.
    D. Azulay, I. Levine, S. Gupta, E. Barak-Kulbak, A. Bera, G. San, S. Simha, D. Cahen, O. Millo, G. Hodes, and I. Balberg, Phys. Chem. Chem. Phys. 20, 24444 (2018).CrossRefGoogle Scholar
  10. 10.
    M. V. Khenkin, D. V. Amasev, S. A. Kozyukhin, A. V. Sadovnikov, E. A. Katz, and A. G. Kazanskii, Appl. Phys. Lett. 110, 222107 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    D. S. Saranin, V. Mazov, L. O. Luchnikov, D. Lypenko, P. A. Gostishev, D. Muratov, D. A. Podgorny, D. M. Migunov, S. I. Didenko, M. Orlova, D. Kuznetsov, A. R. Tameev, and A. di Carlo, J. Mater. Chem. C 6, 6179 (2018).CrossRefGoogle Scholar
  12. 12.
    Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, Appl. Phys. Lett. 105, 163508 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    G. Gordillo, C. A. Otálora, and M. A. Reinoso, J. Mater. Sci.: Mater. Electron. 29, 4276 (2018).Google Scholar
  14. 14.
    A. D. Wright, R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, Adv. Funct. Mater. 27, 1700860 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Emin, E. Pavlica, H. Okuyucu, M. Valant, and G. Bratina, Mater. Chem. Phys. 220, 182 (2018).CrossRefGoogle Scholar
  16. 16.
    A. Dobrovolsky, A. Merdasa, E. L. Unger, A. Yartsev, and I. G. Scheblykin, Nat. Commun. 8, 34 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, Adv. Funct. Mater. 25, 6218 (2015).CrossRefGoogle Scholar
  18. 18.
    R. H. Bube, Photoelectronic Properties of Semiconductors (Cambridge Univ. Press, Cambridge, 1992).Google Scholar
  19. 19.
    E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. Lett. 5, 2390 (2014).CrossRefGoogle Scholar
  20. 20.
    N. Onoda-Yamamuro, T. Matsuo, and H. Suga, J. Phys. Chem. Solids 53, 935 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    C. L. Davies, M. R. Filip, J. B. Patel, T. W. Crothers, C. Verdi, A. D. Wright, R. L. Milot, F. Giustino, M. B. Johnston, and L. M. Herz, Nat. Commun. 9, 293 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Amasev
    • 1
  • A. R. Tameev
    • 2
  • A. G. Kazanskii
    • 3
    Email author
  1. 1.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations