, Volume 53, Issue 15, pp 2007–2011 | Cite as

Predicting the Conditions for the Vapor-Phase Epitaxy of the III–V Compounds

  • E. N. VigdorovichEmail author


Chloride-hydride epitaxy is the main vapor-phase technique for forming layers of functional homostructures and heterostructures for microelectronics and optoelectronics. At present, nanoheterostructures are obtained by MOS-hydride and molecular epitaxy; the molecular-layering technique is currently being perfected. The occurrence of new materials requires long-term development of the optimal technological conditions for their fabrication and the mathematical, physical, and other principles for modeling these processes. The chloride-hydride method continues to be perfected for forming relatively thick layers of functional heterostructures. The work outlines the fundamentals of physicochemical modeling by the example of chloride-hydride epitaxy. A physicochemical model of the variation in the technological modes of the vapor-phase epitaxy of different compounds under the corresponding conditions, which facilitate the formation of compounds with the same degree of disorder, is discussed. Equations for predicting the conditions for the epitaxy of other materials of the same group by the well-developed technology of a material have been derived. The obtained regularities can be used to optimize the chloride-hydride epitaxy of gallium phosphide and solid solutions based on it. The calculated conditions for gallium-nitride epitaxy are shown to be in good agreement with the conditions of real technological developments made by other authors.


gallium arsenide gallium phosphide gallium nitride vapor-phase epitaxy crystallization energy free surface energy thermodynamic supersaturation 



  1. 1.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    S. A. Mintairov, V. M. Emelyanov, D. V. Rybalchenko, R. A. Salii, N. K. Timoshina, M. Z. Shvarts, and N. A. Kalyuzhnyy, Semiconductors 50, 517 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Malygin, Ross. Nanotekhnol. 2 (3–4), 87 (2007).ADSGoogle Scholar
  4. 4.
    V. F. Dorfman, Gas-Phase Metallurgy of Semiconductors (Metallurgiya, Moscow, 1974) [in Russian].Google Scholar
  5. 5.
    V. F. Dorfman, Micrometallurgy in Microelectronics (Metallurgiya, Moscow, 1978) [in Russian].Google Scholar
  6. 6.
    B. F. Ormont, Introduction to the Physical Chemistry and Crystal Chemistry of Semiconductors (Vysshaya Shkola, Moscow, 1973) [in Russian].Google Scholar
  7. 7.
    M. Kh. Karapet’yants, Methods for the Comparative Calculation of the Physicochemical Properties of Substances (Nauka, Moscow, 1965) [in Russian].Google Scholar
  8. 8.
    E. N. Vigdorovich and N. L. Vigdorovich, Elektron. Tekh., Ser.: Mater., No. 1, 65 (1987).Google Scholar
  9. 9.
    M. D. Vilisova, E. P. Drugova, I. Yu. Poltavets, et al., Elektron. Prom-st’, Nos. 2–3, 53 (2002).Google Scholar
  10. 10.
    S. Yu. Vladimirova, I. V. Ivonin, L. G. Lavrent’eva, et al., Crystallogr. Rep. 41, 889 (1996).ADSGoogle Scholar
  11. 11.
    S. S. Strel’chenko and N. Yu. Kozlov, Nauka, Tekh. Obrazov., No. 4 (4), 183 (2015).Google Scholar
  12. 12.
    S. S. Strel’chenko and V. V. Lebedev, AIII-BV Compounds, The Reference Book (Metallurgiya, Moscow, 1984) [in Russian].Google Scholar
  13. 13.
    A. Yu. Egorov, N. V. Kryzhanovskaya, and M. S. Sobolev, Semiconductors 45, 1169 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Kryzhanovskaya, A. Yu. Egorov, E. V. Pirogov, and M. S. Sobolev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 479 (2012).CrossRefGoogle Scholar
  15. 15.
    M. S. Sobolev, Cand. Sci. (Phys. Math.) Dissertation (St. Petersburg, 2015).Google Scholar
  16. 16.
    I. Mateshev, A. Mulenkova, A. Turkin, and K. Shamkov, Poluprovodn. Svetotekh., No. 5, 30 (2013).Google Scholar
  17. 17.
    M. G. Mynbaeva, A. I. Pechnikov, A. N. Smirnov, et al., Fiz. Mekh. Mater. 29 (1), 24 (2016).Google Scholar
  18. 18.
    M. G. Mynbaeva, A. I. Pechnikov, A. A. Sitnikova, D. A. Kirilenko, A. A. Lavrent’ev, E. V. Ivanova, and V. I. Nikolaev, Tech. Phys. Lett. 41, 246 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Bougrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, LED Profess. Rev., No. 18, 42 (2010).Google Scholar
  20. 20.
    A. Kovsh, V. Nikolaev, M. Odnoblyudov, and A. Romanov, Poluprovodn. Svetotekh., No. 5, 30 (2011).Google Scholar
  21. 21.
    V. I. Nikolaev, A. A. Golovatenko, M. G. Mynbaeva, et al., Phys. Status Solidi C 11, 502 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    Sh. Sh. Sharofidinov, A. A. Golovatenko, I. P. Nikitina, et al., Fiz. Mekh. Mater. 22 (1), 53 (2015).Google Scholar
  23. 23.
    M. G. Mynbaeva, A. I. Pechnikov, Sh. Sh. Sharofidinov, et al., Fiz. Mekh. Mater. 22 (1), 30 (2015).Google Scholar
  24. 24.
    V. Nikolaev, A. Golovatenko, M. Mynbaeva, et al., Phys. Status Solidi C 11, 624 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Russian Technological University MIREAMoscowRussia

Personalised recommendations