Field-Emission Cathodes Based on Microchannel Plates

  • 11 Accesses


The existing methods of fabricating low-field cathodes do not permit the development of device structures that comply with the requirements of developers of systems. In this work, large-area field-emission cathodes with homogeneous emission properties of the working surface and low working voltages (<1 kV) are considered. A Spindt cathode with a number of silicon microtips up to 6000 and a packing density of ~1 × 105 cm–2 is investigated. Titanium nitride and carbon films are deposited onto microtips using the electric-arc method. It is shown that the cathode has low emission homogeneity due to the problem of reproducing microtips of the same shape and size. A cathode based on a microchannel plate with channels 6 μm in diameter, inside which graphite-like nanostructures are formed by the electric-arc method, is fabricated. It is found that an increase in the electron flux in the channels of a microchannel plate can result in a considerable decrease in the operating voltage (<1 kV) and attain high emission homogeneity at the highest admissible output current.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    V. Zhigalov, V. Petukhov, A. Emelianov, et al., in Proceedings of the IEEE Young Researches in Electrical and Electronic Engineering ELConRus,2017, p. 1449.

  2. 2

    R. V. Konakova, O. B. Okhrimenko, A. M. Svetlichnyi, O. A. Ageev, E. Yu. Volkov, A. S. Kolomiytsev, I. L. Jityaev, and O. B. Spiridonov, Semiconductors 49, 1242 (2015).

  3. 3

    G. G. Sominskii and T. A. Tumareva, Izv. Vyssh. Uchebn. Zaved., PND 17 (3), 17 (2009).

  4. 4

    G. N. Fursei, M. A. Polyakov, A. A. Kantonistov, A. M. Yafyasov, B. S. Pavlov, and V. B. Bozhevol’nov, Tech. Phys. 58, 845 (2013).

  5. 5

    S. G. Savel’ev, N. I. Sinitsyn, G. V. Torgashov, and Yu. A. Grigor’ev, in Proceedings of the International Interschool Conference on Modern Problems of Microwave Electronics and Radiophysics, Saratov,2001, p. 138.

  6. 6

    E. Z. Khamdokhov, Z. M. Khamdokhov, V. S. Kulikauskas, et al., J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 8, 12997 (2014).

  7. 7

    C. A. Spindt, I. Brodie, L. Humphry, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

  8. 8

    A. Z. Khamdokhov and E. Z. Khamdokhov, RF Patent No. 2497977, Byull. Izobret., No. 31 (2013).

  9. 9

    E. Z. Khamdohov, R. Sh. Teshev, Z. M. Khamdohov, A. Z. Khamdohov, Z. H. Kalajokov, and H. H. Kalajokov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1306 (2014).

  10. 10

    E. Z. Khamdokhov and Z. M. Khamdokhov, RF Patent No. 2640355 (2016).

Download references

Author information

Correspondence to Z. M. Khamdokhov.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khamdokhov, Z.M., Margushev, Z.C., Khamdokhov, E.Z. et al. Field-Emission Cathodes Based on Microchannel Plates. Semiconductors 53, 2037–2039 (2019).

Download citation


  • field-emission cathode
  • microchannel plate
  • electric field
  • current gain