, Volume 53, Issue 15, pp 1986–1991 | Cite as

Electron Microscopy Study of Silver Nanoparticles Obtained by Thermal Evaporation

  • Ya. S. GrishinaEmail author
  • N. I. Borgardt
  • R. L. Volkov
  • D. G. Gromov
  • A. I. Savitskiy


Metallic nanoparticles are promising objects of study, since their properties greatly differ from the properties of bulk material. In analyzing nanoparticles, it is important to investigate their size, stability, structural features, and spatial arrangement. In this study, initial and annealed silver nanoparticles from ∼2 to 10 nm in size formed on a carbon substrate by vacuum thermal evaporation are investigated by high resolution transmission electron microscopy and their shape and structure are classified. The examined nanoparticle types include faceted ellipsoid ones with a polycrystalline structure, coarse ones with a single-crystal structure and twins, icosahedral and decahedral ones with multiple twinning, and fine single-crystal nanoparticles smaller than 3.5 nm. It is established that, after annealing, the total number of nanoparticles decreases by a factor of ~1.3, the number of fine nanoparticles almost halves, and the fraction of nanoparticles with icosahedral and decahedral cross sections increases by a factor of ~1.5. It is shown that nanoparticles smaller than 5 nm become unstable already after a few seconds of exposure to high-energy electrons. For fine single-crystal nanoparticles smaller than 3.5 nm, the average crystal-lattice parameter is found by precise determination of the centers of atomic columns in their images and calculation of the local distances between atoms located in the mutually perpendicular (200) and (022) planes. It is shown that, in such nanoparticles both before and after annealing, there are no noticeable crystal-structure distortions and their lattice parameter is similar to the value characteristic of bulk silver.


silver nanoparticles vacuum thermal evaporation high-resolution transmission electron microscopy crystal-lattice parameter 



This study was carried out using equipment of the Center for Collective Use “Diagnostics and Modification of Microstructures and Nanoobjects”.


This study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 3.7829.2017/8.9.


  1. 1.
    D. Takagi, Y. Homma, H. Hibino, et al., Nano Lett. 6, 2642 (2006). ADSCrossRefGoogle Scholar
  2. 2.
    D. G. Gromov, L. M. Pavlova, A. I. Savitskii, and A. Yu. Trifonov, Surf. Phys. Thin Films 57, 173 (2015).Google Scholar
  3. 3.
    M. Asgar, M. Hasan, Md. Huq, and Z. H. Mahmood, J. Nanomed. Nanotechnol. 5, 4 (2014). Accessed May 13, 2018. CrossRefGoogle Scholar
  4. 4.
    K. Awazu, M. Fujimaki, C. Rockstuhl, et al., Am. Chem. Soc. 130, 1676 (2008). CrossRefGoogle Scholar
  5. 5.
    S. Cobley, S. Skrabalak, D. Campbell, and Y. Xia, Plasmonics 4, 171 (2009). CrossRefGoogle Scholar
  6. 6.
    P. Spinelli, M. Hebbink, R. Waele, et al., Nano Lett. 11, 1760 (2011). ADSCrossRefGoogle Scholar
  7. 7.
    V. Maheshwari, J. Kane, and R. F. Saraf, Adv. Mater. 20, 284 (2008). CrossRefGoogle Scholar
  8. 8.
    U. Jeong, X. Teng, Y. Wang, et al., Adv. Mater. 19, 33 (2007). CrossRefGoogle Scholar
  9. 9.
    M. J. Yacaman, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, J. Vac. Sci. Technol. 19, 1091 (2001). CrossRefGoogle Scholar
  10. 10.
    Z. L. Wang, J. Phys. Chem. 104, 1153 (2000). CrossRefGoogle Scholar
  11. 11.
    C. L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991). Accessed May 13, 2018. ADSCrossRefGoogle Scholar
  12. 12.
    I. Shyjumon, M. Gopinadhan, O. Ivanova, et al., Eur. Phys. J. 37, 409 (2006). ADSCrossRefGoogle Scholar
  13. 13.
    S. J. Onodera, J. Phys. Soc. 61, 2190 (1992). Accessed May 13, 2018. ADSCrossRefGoogle Scholar
  14. 14.
    W. Cai, H. Hofmeister, and M. Dubiel, Eur. Phys. J. 13, 245 (2001).ADSGoogle Scholar
  15. 15.
    H. J. Wassermann and J. S. Vermaak, Surf. Sci. 22, 164 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    K. Du, F. Ernst, M. C. Pelsozy, et al., Acta Mater. 58, 836 (2010). CrossRefGoogle Scholar
  17. 17.
    B. T. Sneed, A. P. Young, and C. Tsung, Nanoscale 7, 12248 (2015). ADSCrossRefGoogle Scholar
  18. 18.
    D. G. Gromov, E. A. Lebedev, A. I. Savitskiy, et al., J. Phys.: Conf. Ser. 643, 012014-1 (2015). CrossRefGoogle Scholar
  19. 19.
    J. Ayache, L. Beaunier, J. Boumendil, et al., Sample Preparation Handbook for Transmission Electron Microscopy (Springer, New York, 2009).Google Scholar
  20. 20.
    K. Koga and K. Sugawara, Surf. Sci. 529, 23 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    H. Hofmeister, G. L. Tan, and M. Dubiel, J. Mater. Res. 20, 1551 (2005). ADSCrossRefGoogle Scholar
  22. 22.
    L. D. Marks, Rep. Prog. Phys. 57, 603 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    F. Baletto, R. Ferrando, A. Fortunelli, and C. Mottet, J. Chem. Phys. 116, 3856 (2002). ADSCrossRefGoogle Scholar
  24. 24.
    H. Guo, IEEE Signal Process. Mag. 28 (5), 134 (2011). ADSCrossRefGoogle Scholar
  25. 25.
    F. S. F. S. Wells, A. V. Pan, X. R. Wang, et al., Sci. Rep. 5, 8677-1 (2015). CrossRefGoogle Scholar
  26. 26.
    M. C. Morris, H. F. McMurdie, E. H. Evans, et al., Natl. Bur. Stand. Circ. 13, 35 (1976).Google Scholar
  27. 27.
    GOST (State Standard) No. R 8.736-2011 (2013).Google Scholar
  28. 28.
    GOST (State Standard) No. R 8.697-2010 (2010).Google Scholar
  29. 29.
    H. E. Swanson and E. Tatge, Natl. Bur. Stand. Circ. 1, 23 (1953).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Ya. S. Grishina
    • 1
    Email author
  • N. I. Borgardt
    • 1
  • R. L. Volkov
    • 1
  • D. G. Gromov
    • 1
  • A. I. Savitskiy
    • 1
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia

Personalised recommendations