, Volume 53, Issue 15, pp 2016–2023 | Cite as

Investigation of the Initial Silicon-on-Sapphire Layer Formed by CVD Techniques

  • S. D. FedotovEmail author
  • E. M. Sokolov
  • V. N. Statsenko
  • A. V. Romashkin
  • S. P. Timoshenkov


The complexity of optimizing the technology of heteroepitaxy is an important limiting factor of the application of silicon-on-sapphire (SOS) structures. In order to eliminate this technological barrier, we study the gas-phase formation of the initial silicon layer on the R-plane of sapphire. The parameters of the deposited layers are analyzed using industrial quality-control methods and X-ray diffraction, SEM, and Raman-spectroscopy. The resistivity-distribution profiles are obtained by the spreading-resistance (SRP) method. It is shown that the initial stage of growth at a temperature of 910–930°C leads to a decrease in the autodoping of the silicon layer with aluminum from the substrate. Heat treatment of the initial layer formed at a temperature of 945–965°C makes it possible to obtain a high structural quality of SOS structures in a wide range of deposition temperatures (960–1005°C) of the main layer layer. Comparison of the SOS structures obtained with optimal parameters of the developed mode and by means of the conventional process shows a decrease in the full width at half-maximum of the rocking curve to ~0.24°, a decrease in mechanical compressive stresses to 0.8–1.96 GPa, and homogeneity of the resistivity profile to a depth of 180–350 nm. Application of the developed technological modes can significantly improve the homogeneity of the control parameters of the SOS in a single process, which improves the performance of the manufacturing process.


silicon on sapphire epitaxy heteroepitaxy gas-phase epitaxy CVD—chemical vapor deposition silicon dielectric initial layer deposition temperature heat treatment annealing 



We thank the staff of the Research Laboratory, RMTA MIET, N.N. Gerasimenko and D.I. Smirnov for carrying out X-ray analysis of the thin layers and help in interpreting the results.


The work was supported in part by the Federal Targeted Program for 2014–2020 of the Ministry of Education and Science of the Russian Federation (agreement no. 14.574.21.0184 of October 3, 2017, unique identifier RFMEFI57417X0184).


  1. 1.
    T. Kaya, H. Koser, and E. Culurciello, Electron. Lett. 42, 526 (2006).CrossRefGoogle Scholar
  2. 2.
    T. Galchev, W. C. Welch, and K. Najafi, in Proceedings of the IEEE 20th International Conference on Micro Electro Mechanical Systems, Hyogo, Japan, January 21–25,2007 (IEE Xplore Digital Library, 2007), p. 309.Google Scholar
  3. 3.
    G. C. Ndubuisi, J. Liu, and J. M. Cowley, Microsc. Res. Tech. 20, 439 (1992).CrossRefGoogle Scholar
  4. 4.
    Q.-Y. Wang, J.-P. Nie, F. Yu, et al., Mater. Sci. Eng. B 72, 189 (2000).CrossRefGoogle Scholar
  5. 5.
    Q. Y. Wang, Yu. Zan, J. Wang, and Y. H. Yu, Mater. Sci. Eng. B 29, 43 (1995).CrossRefGoogle Scholar
  6. 6.
    A. A. Chistilin, A. A. Romanov, Yu. M. Moskovskaya, and A. V. Ulanova, Russ. Microelectron. 40, 209 (2011).CrossRefGoogle Scholar
  7. 7.
    P. Baeri and E. Rimini, Mater. Chem. Phys. 46, 169 (1996).CrossRefGoogle Scholar
  8. 8.
    M. Moyzykh, S. Samoilenkov, V. Amelichev, et al., J. Cryst. Growth 383, 145 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    E. M. Sokolov, S. D. Fedotov, V. N. Statsenko, S. P. Timoshenkov, and A. V. Emelyanov, Semiconductors 51, 1692 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    V. S. Papkov and M. B. Tsybul’nikov, in Epitaxial Silicon Layers on Dielectric Substrates and Devices Based on them, Ed. by A. Yu. Malinin (Energiya, Moscow, 1979) [in Russian].Google Scholar
  11. 11.
    Yu. B. Bolkhovityanov, A. K. Gutakovskii, A. S. Deryabin, O. P. Pchelyakov, and L. V. Sokolov, Semiconductors 42, 1 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    A. Yu. Ignatov, V. S. Postolov, and M. M. Sabel’nikova, in Proceedings of the 6th International Conference on Solid State Chemistry and Modern Micro- and Nanotechnology (SevKavGTU, Kislovodsk, Stavropol’, 2006).Google Scholar
  13. 13.
    S. D. Fedotov, S. P. Timoshenkov, E. M. Sokolov, and V. N. Statsenko, Izv. Vyssh. Uchebn. Zaved., Radioelektron., No. 5, 28 (2017).Google Scholar
  14. 14.
    N. E. Maslova, A. A. Antonovsky, D. M. Zhigunov, V. Yu. Timoshenko, V. N. Glebov, and V. N. Seminogov, Semiconductors 44, 1040 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    E. Anastassakis, A. Cantarero, and M. Cardona, Phys. Rev. B 41, 7529 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. D. Fedotov
    • 1
    • 2
    Email author
  • E. M. Sokolov
    • 1
  • V. N. Statsenko
    • 1
  • A. V. Romashkin
    • 2
    • 3
  • S. P. Timoshenkov
    • 2
  1. 1.JSC EPIELMoscowRussia
  2. 2.National Research University “MIET”MoscowRussia
  3. 3.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations