Advertisement

Semiconductors

, Volume 53, Issue 11, pp 1419–1426 | Cite as

Temperature Coefficient of Movement of the Resonance Level of Iron in Pb1 – x – ySnxFeyTe Alloys

  • E. P. SkipetrovEmail author
  • B. B. Kovalev
  • L. A. Skipetrova
  • A. V. Knotko
  • V. E. Slynko
ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • 8 Downloads

Abstract

The phase and elemental composition and the temperature dependences of the resistivity and Hall coefficient (temperature range 4.2 K ≤ T ≤ 300 K, magnetic fields B ≤ 0.07 T) are studied in Pb1 – x ySnxFeyTe alloys with varying matrix composition and iron-impurity concentration along single-crystal ingots synthesized by the Bridgman–Stockbarger method. The distributions of tin and iron along ingots are obtained. Anomalous temperature dependences of the Hall coefficient related to the Fermi-level pinning by the resonance level of iron located in the valence band of the alloys are found. The experimental results are analyzed within the model of transformation of the electronic structure, involving iron level movement with respect to the top of the valence band with increasing tin concentration and temperature. The temperature coefficient of the iron level movement with respect to the midgap is determined. Possible diagrams of transformation of the electronic structure with increasing temperature in alloys with the normal spectrum (0.06 ≤ x ≤ 0.35) are proposed.

Keywords:

Pb1 –xySnxFeyTe alloys galvanomagnetic effects electronic structure resonance level of iron 

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 19-02-00774.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    E. P. Skipetrov, L. A. Skipetrova, A. V. Knotko, E. I. Slynko, and V. E. Slynko, J. Appl. Phys. 115, 133702 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    M. N. Vinogradova, E. A. Gurieva, V. I. Zharskii, S. V. Zarubo, L. V. Prokofeva, T. T. Dedegkaev, and I. I. Kryukov, Sov. Phys. Semicond. 12, 387 (1978).Google Scholar
  3. 3.
    F. F. Sizov, V. V. Teterkin, L. V. Prokofeva, and E. A. Gurieva, Sov. Phys. Semicond. 14, 1063 (1980).Google Scholar
  4. 4.
    A. A. Vinokurov, A. I. Artamkin, S. G. Dorofeev, T. A. Kuznetsova, and V. P. Zlomanov, Inorg. Mater. 44, 576 (2008).CrossRefGoogle Scholar
  5. 5.
    E. P. Skipetrov, A. N. Golovanov, E. I. Slynko, and V. E. Slynko, Low Temp. Phys. 39, 76 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. D. Vulchev, L. D. Borisova, and K. Dimitrova, Phys. Status Solidi A, 97, K79 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    L. M. Kashirskaya, L. I. Ryabova, O. I. Tananaeva, and N. A. Shirokova, Sov. Phys. Semicond. 24, 848 (1990).Google Scholar
  8. 8.
    T. Story, Acta Phys. Pol. A 94, 189 (1998).CrossRefGoogle Scholar
  9. 9.
    I. I. Ivanchik, D. R. Khokhlov, A. V. Morozov, A. A. Terekhov, E. I. Slyn’ko, V. E. Slyn’ko, A. de Visser, and W. D. Dobrowolski, Phys. Rev. B 61, R14889 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    K. A. Kikoin and V. N. Fleurov, Transition Metal Impurities in Semiconductors: Electronic Structure and Physical Properties (World Scientific, Singapore, 1994).Google Scholar
  11. 11.
    E. P. Skipetrov, O. V. Kruleveckaya, L. A. Skipetrova, E. I. Slynko, and V. E. Slynko, Appl. Phys. Lett. 105, 022101 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    E. P. Skipetrov, O. V. Kruleveckaya, L. A. Skipetrova, A. V. Knotko, E. I. Slynko, and V. E. Slynko, J. Appl. Phys. 118, 195701 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    E. P. Skipetrov, B. B. Kovalev, L. A. Skipetrova, A. V. Knotko, and V. E. Slynko, J. Alloys Compd. 775, 769 (2019).CrossRefGoogle Scholar
  14. 14.
    E. P. Skipetrov, B. B. Kovalev, L. A. Skipetrova, A. V. Knotko, and V. E. Slynko, Low Temp. Phys. 45, 201 (2019).ADSCrossRefGoogle Scholar
  15. 15.
    G. Tan, F. Shi, S. Hao, H. Chi, L.-D. Zhao, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, J. Am. Chem. Soc. 137, 5100 (2015).CrossRefGoogle Scholar
  16. 16.
    L. Wang, X. Tan, G. Liu, J. Xu, H. Shao, B. Yu, H. Jiang, S. Yue, and J. Jiang, ACS Energy Lett. 2, 1203 (2017).CrossRefGoogle Scholar
  17. 17.
    D. K. Bhat and U. S. Shenoy, Mater. Today Phys. 4, 12 (2018).CrossRefGoogle Scholar
  18. 18.
    G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    A. D. LaLonde, Y. Pei, H. Wang, and G. J. Snyder, Mater. Today 14, 526 (2011).CrossRefGoogle Scholar
  20. 20.
    X. Zhang and L.-D. Zhao, J. Materiomics 1, 92 (2015).Google Scholar
  21. 21.
    V. E. Slynko and W. Dobrowolski, Visn. Lviv Polytec. Natl. Univ., Electron., No. 681, 144 (2010).Google Scholar
  22. 22.
    E. I. Slynko, V. M. Vodopyanov, A. P. Bakhtinov, V. I. Ivanov, V. E. Slynko, W. Dobrowolski, and V. Domukhowski, Visn. Lviv Polytec. Natl. Univ., Electron., No. 734, 67 (2012).Google Scholar
  23. 23.
    V. I. Kaidanov and Yu. I. Ravich, Phys. Usp. 28, 31 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    E. P. Skipetrov, E. A. Zvereva, N. N. Dmitriev, A. V. Golubev, and V. E. Slynko, Semiconductors 40, 893 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    E. P. Skipetrov, N. A. Pichugin, E. I. Slyn’ko, and V. E. Slyn’ko, Semiconductors 47, 729 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    E. Skipetrov, E. Zvereva, L. Skipetrova, B. Kovalev, O. Volkova, A. Golubev, and E. Slyn’ko, Phys. Status Solidi B 241, 1100 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    M. Ratuszek and M. J. Ratuszek, J. Phys. Chem. Solidi 46, 837 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    V. D. Vulchev and L. D. Borisova, Phys. Status Solidi A 99, K53 (1987).ADSCrossRefGoogle Scholar
  29. 29.
    E. P. Skipetrov, N. A. Pichugin, E. I. Slyn’ko, and V. E. Slyn’ko, Low Temp. Phys. 37, 210 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    E. P. Skipetrov, O. V. Kruleveckaya, L. A. Skipetrova, and V. E. Slynko, J. Appl. Phys. 121, 045702 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    G. Nimtz and B. Schlicht, in Narrow-Gap Semiconductors, Vol. 98 of Springer Tracts in Modern Physics (Springer, Berlin, Heidelberg, New York, Tokyo, 1983).Google Scholar
  32. 32.
    R. N. Tauber, A. A. Machonis, and I. B. Cadoff, J. Appl. Phys. 37, 4855 (1966).ADSCrossRefGoogle Scholar
  33. 33.
    C. M. Jaworski, M. D. Nielsen, H. Wang, S. N. Girard, W. Cai, W. D. Porter, M. G. Kanatzidis, and J. P. Heremans, Phys. Rev. B 87, 045203 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    Z. M. Gibbs, H. Kim, H. Wang, R. L. White, F. Drymiotis, M. Kaviany, and G. J. Snyder, Appl. Phys. Lett. 103, 262109 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. P. Skipetrov
    • 1
    • 2
    Email author
  • B. B. Kovalev
    • 1
  • L. A. Skipetrova
    • 1
  • A. V. Knotko
    • 2
  • V. E. Slynko
    • 3
  1. 1.Faculty of Physics, Moscow State UniversityMoscowRussia
  2. 2.Faculty of Materials Science, Moscow State UniversityMoscowRussia
  3. 3.Institute of Materials Science Problems, National Academy of Sciences of UkraineChernivtsyUkraine

Personalised recommendations