, Volume 53, Issue 11, pp 1550–1557 | Cite as

On the Phase Composition, Morphology, and Optical and Electronic Characteristics of AlN Nanofilms Grown on Misoriented GaAs(100) Substrates

  • P. V. SeredinEmail author
  • A. V. Fedyukin
  • V. A. Terekhov
  • K. A. Barkov
  • I. N. Arsentyev
  • A. D. Bondarev
  • E. V. Fomin
  • N. A. Pikhtin


Thin AlN nanofilms are produced by reactive ion-plasma deposition onto GaAs(100) substrates misoriented with respect to the 〈100〉 direction to different degrees. It is shown that growth on substrates misoriented with respect to the 〈100〉 direction to different degrees results in the formation of AlN films with different phase compositions and crystal states. An increase in the degree of misorientation of the GaAs(100) substrate used for growth influences both the structural quality of AlN nanofilms and their electronic structure, surface morphology, and optical properties. Thus, the morphology, surface composition, and optical functional characteristics of AlN/GaAs(100) heterophase systems can be controlled using differently misoriented GaAs(100) substrates.


AlN GaAs misorientation ion-plasma deposition 



The experimental studies were conducted using scientific and technological equipment of the Multiple-Access Center for Scientific Facilities, Voronezh State University.


The study was supported by the President of the Russian Federation, project MD-42.2019.2, and the Government of the Russian Federation, resolution no. 211, agreement no. 02.A03.21.0006.

The part of the study concerned with controlling the morphology and composition of bulk and porous substrates was fulfilled by the Ioffe Institute.

The part of the study concerned with the diagnostics of integrated structures was supported by the Ministry of Education and Science of the Russian Federation, government order to institutes of higher education in the field of research activities for 2017–2019, project no. 11.4718.2017/8.9.


The authors declare that they have no conflict of interest.


  1. 1.
    S. Lin, X. Li, P. Wang, Z. Xu, S. Zhang, H. Zhong, Z. Wu, W. Xu, and H. Chen, Sci. Rep. 5, 15103 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    X. Lu, N. Kumagai, Y. Minami, and T. Kitada, Appl. Phys. Express 11, 015501 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Phys. B 405, 2694 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    E. P. Domashevskaya, P. V. Seredin, A. N. Lukin, L. A. Bityutskaya, M. V. Grechkina, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Surf. Interface Anal. 38, 828 (2006).CrossRefGoogle Scholar
  5. 5.
    S. Fujieda, M. Mizuta, and Y. Matsumoto, Jpn. J. Appl. Phys. 27, L296 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    P. V. Seredin, D. L. Goloschapov, A. S. Lenshin, V. E. Ternovaya, I. N. Arsentyev, A. D. Bondarev, and I. S. Tarasov, Bull. Russ. Acad. Sci.: Phys. 81, 1119 (2017).CrossRefGoogle Scholar
  7. 7.
    P. V. Seredin, V. M. Kashkarov, I. N. Arsentyev, A. D. Bondarev, and I. S. Tarasov, Phys. B (Amsterdam, Neth.) 495, 54 (2016).Google Scholar
  8. 8.
    P. K. Ghosh, M. Sarollahi, C. Li, T. White, D. T. Debu, Q. Yan, A. Kuchuk, R. Kumar, S. Shetty, G. J. Salamo, and M. E. Ware, J. Vac. Sci. Technol. B 36, 041202 (2018).CrossRefGoogle Scholar
  9. 9.
    X. Li, Y. L. Tansley, K. S. A. Butcher, and D. Alexiev, Solid-State Electron. 36, 381 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    C. Ozgit, I. Donmez, M. Alevli, and N. Biyikli, Thin Solid Films 520, 2750 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    J. Ross, M. Rubin, and T. K. Gustafson, J. Mater. Res. 8, 2613 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    T. Aoki, N. Fukuhara, T. Osada, H. Sazawa, M. Hata, and T. Inoue, AIP Adv. 5, 087149 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    H. Dong, J. Sun, S. Ma, J. Liang, T. Lu, X. Liu, and B. Xu, Nanoscale 8, 6043 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    R. Boussaha, H. Fitouri, A. Rebey, and B. E. Jani, Appl. Surf. Sci. 291, 40 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    P. V. Seredin, A. S. Lenshin, A. V. Fedyukin, I. N. Arsentyev, A. V. Zhabotinsky, D. N. Nikolaev, H. Leiste, and M. Rinke, Semiconductors 52, 112 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. Seredin, D. L. Goloshchapov, A. S. Lenshin, A. M. Mizerov, and D. S. Zolotukhin, Phys. E (Amsterdam, Neth.) 104, 101 (2018).Google Scholar
  17. 17.
    P. V. Seredin, D. L. Goloshchapov, D. S. Zolotukhin, A. S. Lenshin, A. N. Lukin, Y. Y. Khudyakov, I. N. Arsentyev, A. V. Zhabotinsky, D. N. Nikolaev, and N. A. Pikhtin, Semiconductors 52, 1012 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, A. V. Zhabotinskiy, and D. N. Nikolaev, Phys. E (Amsterdam, Neth.) 97, 218 (2018).Google Scholar
  19. 19.
    P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, D. N. Nikolaev, and A. V. Zhabotinskiy, Phys. B (Amsterdam, Neth.) 530, 30 (2018).Google Scholar
  20. 20.
    P. V. Seredin, A. S. Lenshin, V. M. Kashkarov, A. N. Lukin, I. N. Arsentiev, A. D. Bondarev, and I. S. Tarasov, Mater. Sci. Semicond. Process. 39, 551 (2015).CrossRefGoogle Scholar
  21. 21.
    P. V. Seredin, A. S. Lenshin, I. N. Arsentyev, I. S. Tarasov, T. Prutskij, H. Leiste, and M. Rinke, Phys. B (Amsterdam, Neth.) 498, 65 (2016).Google Scholar
  22. 22.
    Ya. V. Lubyanskiy, A. D. Bondarev, I. P. Soshnikov, V. V. Zolotarev, D. A. Kirilenko, K. P. Kotlyar, N. A. Pikhtin, and I. S. Tarasov, Semiconductors 52, 184 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    T. M. Zimkina and V. A. Fomichev, Ultra-Soft X-Ray Spectroscopy (Leningr. Univ., Leningrad, 1971) [in Russian].Google Scholar
  24. 24.
    E. P. Domashevskaya, Y. A. Peshkov, V. A. Terekhov, Y. A. Yurakov, and K. A. Barkov, Surf. Interface Anal. 50, 1265 (2018).CrossRefGoogle Scholar
  25. 25.
    A. V. Ankudinov, V. P. Evtikhiev, V. E. Tokranov, V. P. Ulin, and A. N. Titkov, Semiconductors 33, 555 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    V. A. Fomichev, Sov. Phys. Solid State 10, 597 (1968).Google Scholar
  27. 27.
    M. Magnuson, M. Mattesini, C. Höglund, J. Birch, and L. Hultman, Phys. Rev. B 80, 155105 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    P. Jonnard, N. Capron, F. Semond, J. Massies, E. Martinez-Guerrero, and H. Mariette, Eur. Phys. J. B 42, 351 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    G. Wiech and E. Zöpf, J. Phys. Colloq. 32, C4-200 (1971).CrossRefGoogle Scholar
  30. 30.
    P. V. Seredin, A. S. Lenshin, D. L. Goloshchapov, A. N. Lukin, I. N. Arsentyev, A. D. Bondarev, and I. S. Tarasov, Semiconductors 49, 915 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, Berlin, Heidelberg, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. V. Seredin
    • 1
    • 2
    Email author
  • A. V. Fedyukin
    • 1
  • V. A. Terekhov
    • 1
  • K. A. Barkov
    • 1
  • I. N. Arsentyev
    • 3
  • A. D. Bondarev
    • 3
  • E. V. Fomin
    • 3
    • 4
  • N. A. Pikhtin
    • 3
    • 4
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia
  4. 4.St. Petersburg State Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations