, Volume 53, Issue 11, pp 1489–1495 | Cite as

Time-Resolved Photoluminescence of InGaAs Nanostructures Different in Quantum Dimensionality

  • A. M. NadtochiyEmail author
  • S. A. Mintairov
  • N. A. Kalyuzhnyy
  • M. V. Maximov
  • D. A. Sannikov
  • T. F. Yagafarov
  • A. E. Zhukov


The time-resolved photoluminescence of quantum-confined InGaAs heterostructures grown on GaAs substrates is studied by time-correlated single photon counting. The heterostructures have different dimensionalities: the structures are formed as quantum dots, quantum wells, and structures of transition dimensionality (quantum well-dots). It is found that the room-temperature photoluminescence decay time of the samples substantially depends on their dimensionality and corresponds to 6, 7, and >20 ns for quantum dots, well-dots, and wells, respectively. It is thought that the presence of localization centers for charge carriers can be responsible for the experimentally observed shortening of the photoluminescence time in the heterostructures.


photoluminescence time resolution quantum-confined structures 



The study was supported by the Russian Science Foundation, project no. 16-12-10269.


The authors declare that they have no conflict of interest.


  1. 1.
    S. Freisem, G. Ozgur, K. Shavritranuruk, H. Chen, and D. G. Deppe, Electron. Lett. 44, 679 (2008).CrossRefGoogle Scholar
  2. 2.
    C. Carmesin, F. Olbrich, T. Mehrtens, M. Florian, S. Michael, S. Schreier, C. Nawrath, M. Paul, J. Höschele, B. Gerken, J. Kettler, S. L. Portalupi, M. Jetter, P. Michler, A. Rosenauer, and F. Jahnke, Phys. Rev. B 98, 125407 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, Proc. SPIE 7198, 719814 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Sugiyama, H. Sugiyama, T. Katoh, K. Toprasertpong, H. Sodabanlu, K. Watanabe, D. Alonso-Alvarez, N. J. Ekins-Daukes, and Y. Nakano, Prog. Photovolt.: Res. Appl. 24, 1606 (2016).CrossRefGoogle Scholar
  5. 5.
    G. E. Cirlin, R. R. Reznik, I. V. Shtrom, A. I. Khrebtov, Yu. B. Samsonenko, S. A. Kukushkin, T. Kasama, N. Akopian, and L. Leonardo, Semiconductors 52, 462 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    Qingnan Yu, Xue Li, Yan Jia, Wei Lu, Ming Zheng, Xing Zhang, Yongqiang Ning, and Jian Wu, ACS Photon. 5, 4896 (2018).Google Scholar
  7. 7.
    S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, Nanotechnology 26, 385202 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, Semiconductors 46, 1225 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, and A. E. Zhukov, Semicond. Sci. Technol. 32, 015006 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Payusov, Yu. M. Shernyakov, A. A. Serin, A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhnyy, M. M. Kulagina, A. E. Zhukov, N. Yu. Gordeev, and M. V. Maximov, J. Phys.: Conf. Ser. 1135, 012071 (2018).Google Scholar
  11. 11.
    E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Yu. Zadiranov, N. Kalyuzhnyy, S. Mintairov, and A. Zhukov, Opt. Lett. 43, 4554 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    A. E. Zhukov, N. V. Kryzhanovskaya, and M. V. Maximov, in Proceedings of the International Conference on Frontiers of 21st Century Physics and Ioffe Institute, St. Petersburg, Russia, 2018, p. 33.Google Scholar
  13. 13.
    B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Yu. G. Musi-khin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, and P. Verener, Semiconductors 33, 901 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    M. Gutiérrez, Proc. SPIE 5840, 486 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Nadtochiy, M. V. Maximov, S. A. Mintairov, N. A. Kalyuzhnyy, Y. M. Shernyakov, A. S. Payusov, A. E. Zhukov, S. Rouvimov, and A. V. Savelyev, Proc. SPIE 10114, UNSP101140Y (2017).Google Scholar
  16. 16.
    A. M. Nadtochii, S. A. Mintairov, N. A. Kalyuzhnyy, S. S. Rouvimov, Yu. M. Shernyakov, A. S. Payusov, M. V. Maximov, and A. E. Zhukov, Semiconductors 49, 1090 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    R. Heitz, H. Born, T. Luttgert, A. Hoffmann, and D. Bimberg, Phys. Status Solidi B 221, 65 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    A. Markus, A. Fiore, J. D. Ganiere, U. Oesterle, J. X. Chen, B. Deveaud, M. Ilegems, and H. Reichert, Appl. Phys. Lett. 80, 911 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    O. Nasr, N. Chauvin, M. H. Hadj Alouane, H. Maaref, C. Bru-Chevallier, L. Sfaxi, and B. Ilahi, J. Opt. 19, 025401 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    L. Ya. Karachinsky, S. Pellegrini, G. S. Buller, A. S. Shkolnik, N. Yu. Gordeev, V. P. Evtikhiev, and V. B. Novikov, Appl. Phys. Lett. 84, 7 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. Pellegrini, G. S. Buller, L. Ya. Karachinsky, A. S. Shkolnik, N. Yu. Gordeev, G. G. Zegrya, V. P. Evtikhiev, I. R. Sellers, M. S. Skolnick, H. Y. Liu, and M. Hopkinson, Proc. SPIE 5725, 309 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    I. Gontijo, G. S. Buller, J. S. Massa, A. C. Walker, S. V. Zaitsev, N. Yu. Gordeev, V. M. Ustinov, and P. S. Kop’ev, Jpn. J. Appl. Phys. 38, 674 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Phys. Rev. B 44, 3115 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. M. Nadtochiy
    • 1
    Email author
  • S. A. Mintairov
    • 2
  • N. A. Kalyuzhnyy
    • 2
  • M. V. Maximov
    • 1
  • D. A. Sannikov
    • 3
    • 4
  • T. F. Yagafarov
    • 3
  • A. E. Zhukov
    • 1
  1. 1.St. Petersburg National Research Academic University, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.Skolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations