Advertisement

Semiconductors

, Volume 53, Issue 11, pp 1529–1534 | Cite as

High-Voltage AlInGaN LED Chips

  • L. K. MarkovEmail author
  • M. V. Kukushkin
  • A. S. Pavlyuchenko
  • I. P. Smirnova
  • G. V. Itkinson
  • O. V. Osipov
PHYSICS OF SEMICONDUCTOR DEVICES
  • 10 Downloads

Abstract

A high-voltage light-emitting diode (LED) flip chip based on an AlInGaN heterostructure is developed and fabricated. The LED flip chip consists of 16 elements connected in series, each of which is a convential LED. The chip with a total area of 1.25 × 1.25 mm is intended for a working current of 20 mA and a forward voltage of 48 V. To improve the current-distribution uniformity over the active region of the chip elements and to minimize the losses of the element area occupied by the n-type contact, the n-type contact pads in them are arranged inside the p-type contact region due to the two-level metallization layout with an intermediate insulating layer of dielectric. The arrangement topology of the contact pads is developed using numerical simulation. An increase in the quantum efficiency of the chip is provided by the application of combinations of metals with a high reflectance at the LED emission wavelength, which are used when fabricating n- and p-type contacts as well as current-carrying strips.

Keywords:

light-emitting diode LED chip flip-chip design high-voltage chip gallium nitride 

Notes

CONFLICT OF INTEREST

The authors claim that they have no conflict of interest.

REFERENCES

  1. 1.
    O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, Appl. Phys. Lett. 89, 071109 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    J. Lv, C. Zheng, Q. Chen, S. Zhou, and S. Liu, Phys. Status Solidi 213, 3150 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, IEEE Photon. Technol. Lett. 18, 1152 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    S.-M. Jeong, S. Kissinger, D.-W. Kim, S. Jae Lee, J.-S. Kim, H.-K. Ahn, and C.-R. Lee, J. Cryst. Growth 312, 258 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    C. H. Chiu, P. C. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, Opt. Express 17, 21250 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    J. K. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, Appl. Phys. Lett. 88, 013501 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    L. K. Markov, I. P. Smirnova, A. S. Pavlyuchenko, E. M. Arakcheeva, and M. M. Kulagina, Semiconductors 43, 1521 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea,  M. J.  Ludowise,  G.  Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    D. A. Zakheim, I. P. Smirnova, E. M. Arakcheeva, M. M. Kulagina, S. A. Gurevich, I. V. Rozhansky, V. W. Lundin, A. F. Tsatsulnikov, A. V. Sakharov, A. V. Fomin, A. L. Zakheim, E. D. Vasil’eva, and G. V. Itkinson, Phys. Status Solidi 1, 2401 (2004).CrossRefGoogle Scholar
  10. 10.
    S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, IEEE Trans. Adv. Packag. 28, 273 (2005).CrossRefGoogle Scholar
  11. 11.
    W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 77, 2822 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, IEEE Photon. Technol. Lett. 20, 175 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. K. Markov, I. P. Smirnova, A. S. Pavlyuchenko, M. V. Kukushkin, E. D. Vasil’eva, A. E. Chernyakov, and A. S. Usikov, Semiconductors 47, 409 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    R. Jaschke and K. F. Hoffmann, PCIM Europe (Nuremberg, Germany, 2016), p. 1300.Google Scholar
  15. 15.
    T. Zhan, Y. Zhang, J. Li, J. Ma, Z. Liu, X. Yi, G. Wang, and J. Li, J. Semicond. 34, 094010 (2013).Google Scholar
  16. 16.
    Y.-C. Chiang, B.-C. Lin, K.-J. Chen, S.-H. Chiu, C.-C. Lin, P.-T. Lee, M.-H. Shih, and H.-C. Kuo, Int. J. Photoenergy 2014, 1 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Donofrio, J. Ibbetson, and Z. J. Yao, US Patent No. 8368100 B2 (2013).Google Scholar
  18. 18.
    D. A. Zakheim, G. V. Itkinson, M. V. Kukushkin, L. K. Markov, O. V. Osipov, A. S. Pavluchenko, I. P. Smirnova, and D. A. Bauman, Phys. Status Solidi 12, 381 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. K. Markov
    • 1
    Email author
  • M. V. Kukushkin
    • 1
  • A. S. Pavlyuchenko
    • 1
  • I. P. Smirnova
    • 1
  • G. V. Itkinson
    • 2
  • O. V. Osipov
    • 2
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.ZAO “IRSET-Center” Innovation CompanySt. PetersburgRussia

Personalised recommendations