Advertisement

Semiconductors

, Volume 53, Issue 11, pp 1524–1528 | Cite as

Determination of the Free Charge Carrier Concentration in Boron-Doped Silicon Nanowires Using Attenuated Total Reflection Infrared Spectroscopy

  • E. A. Lipkova
  • A. I. EfimovaEmail author
  • K. A. Gonchar
  • D. E. Presnov
  • A. A. Eliseev
  • A. N. Lapshin
  • V. Yu. Timoshenko
MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • 3 Downloads

Abstract

Attenuated total reflection infrared spectroscopy is used to determine the free charge carrier concentration in arrays of silicon nanowires with characteristic transverse sizes of 50–100 nm and a length of the order of 10 μm formed on lightly doped crystalline p-type silicon by metal-assisted chemical etching and subjected to the additional thermal-diffusion doping of boron at temperatures of 850–1000°C. It is found that the free hole concentration in arrays varies from 5 × 1018 to 3 × 1019 cm–3 depending on the annealing temperature and is maximal at temperatures of 900–950°C. These results can be used to extend the range of potential application of silicon nanowires in photonics, sensorics, and thermoelectric power converters.

Keywords:

doped silicon nanowires attenuated total reflection spectroscopy free charge carriers metal-assisted chemical etching 

Notes

ACKNOWLEDGMENTS

We thank T. Nichiporuk and N.V. Latukhina for the presented samples of doping solutions and useful discussions. We used equipment of the “Educational and Methodical Center of Lithography and Microscopy”, M.V. Lomonosov Moscow State University Research Facilities Sharing Center in our work.

FUNDING

This work was in part supported by the Ministry of Science and Higher Education of the Russian Federation, project 16.2969.2017/4.6.

CONFLICT OF INTEREST

The authors claim that they have no conflict of interest.

REFERENCES

  1. 1.
    A. S. Kalyuzhnaya, A. I. Efimova, L. A. Golovan, K. A. Gonchar, and V. Yu. Timoshenko, in Silicon Nanomaterials Soursebook. Arrays, Functional Materials, and Industrial Nanosilicon, Ed. by K. D. Sattler (CRC, Taylor and Francis Group, Boca Raton, FL, 2017), p. 3.Google Scholar
  2. 2.
    E. Krali and Z. A. K. Durrani, Appl. Phys. Lett. 102, 143102 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    H. Zhang, R. Zhang, K. S. Schramke, N. M. Bedford, K. Hunter, U. R. Kortshagen, and P. Nordlander, ACS Photon. 4, 963 (2017).Google Scholar
  4. 4.
    K. S. Sekerbayev, E. T. Taurbayev, A. I. Efimova, V. Yu. Timoshenko, and T. I. Taurbayev, Semiconductors 51, 1047 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    H. Han, Z. Huang, and W. Lee, Nano Today 9, 271 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Weidemann, M. Kockert, D. Wallacher, M. Ramsteiner, A. Mogilatenko, K. Rademann, and S. F. Fischer, J. Nanomater. 2015, 672305 (2015).CrossRefGoogle Scholar
  7. 7.
    A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nat. Lett. 451, 163 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    S. P. Rodichkina, T. Nychyporuk, A. Pastushenko, and V. Yu. Timoshenko, Phys. Status Solidi RRL 12, 1800224 (2018).CrossRefGoogle Scholar
  9. 9.
    L. A. Golovan, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Usp. 50, 595 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    L. A. Osminkina, E. V. Kurepina, A. V. Pavlikov, V. Yu. Timoshenko, and P. K. Kashkarov, Semiconductors 38, 581 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    F. M. Mirabella, Jr., Appl. Spectrosc. Rev. 21, 45 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    M. Toriumi, M. Yanagimachi, and H. Masuhara, Appl. Opt. 31, 6376 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Lipkova
    • 1
  • A. I. Efimova
    • 1
    Email author
  • K. A. Gonchar
    • 1
  • D. E. Presnov
    • 1
    • 2
  • A. A. Eliseev
    • 3
  • A. N. Lapshin
    • 4
  • V. Yu. Timoshenko
    • 1
    • 5
    • 6
  1. 1.Moscow State University, Faculty of PhysicsMoscowRussia
  2. 2.Moscow State University, D.V. Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  3. 3.Moscow State University, Faculty of Materials ScienceMoscowRussia
  4. 4.Bruker LtdMoscowRussia
  5. 5.National Research Nuclear University “MEPhI”MoscowRussia
  6. 6.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations