Skip to main content
Log in

Crystallization of Amorphous Germanium Films and Multilayer a-Ge/a-Si Structures upon Exposure to Nanosecond Laser Radiation

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The processes of the crystallization of amorphous germanium films and multilayer germanium/silicon structures upon exposure to nanosecond (70 ns) ruby laser radiation (λ = 694 nm) are studied. The samples are grown on silicon and glassy substrates by plasma-enhanced chemical vapor deposition. Pulsed laser annealing of the samples is conducted in the range of pulse energy densities Ep from 0.07 to 0.8 J cm–2. The structure of the films after annealing is determined by analyzing the scanning electron microscopy data and Raman spectra. It is established that, after annealing, the films are completely crystallized and, in this case, contain regions of coarse crystalline grains (>100 nm), whose fraction increases, as Ep is increased, and reaches 40% of the area. From analysis of the position of the Raman peaks, it is conceived that the crystalline grains, whose dimensions exceed 100 nm, either contain structural defects or stretching strains. The correlation length of optical vibrations is determined from the phonon confinement model and found to increase from 5 to 8 nm, as Ep is increased. Pulsed laser annealing of multilayer Ge(10 nm)/Si(5 nm) structures induces partial intermixing of the layers with the formation of Ge–Si alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. V. Dvurechenskii, G. A. Kachurin, E. V. Nidaev, and L. S. Smirnov, Pulsed Annealing Semiconductor Materials (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  2. N. H. Nickel, Laser Crystallization of Silicon—Fundamentals to Devices (Academic, New York, 2003).

    Google Scholar 

  3. S. de Unamuno, and E. Fogarassy, Appl. Surf. Sci. 36, 1 (1989).

    Article  ADS  Google Scholar 

  4. G. Badertscher, R. P. Salathe, and H. P. Weber, Appl. Phys. 25, 91(1981).

    Article  ADS  Google Scholar 

  5. G. A. Novikov, R. I. Batalov, R. M. Bayazitov, I. A. Faizrakhmanov, N. M. Lyadov, V. A. Shustov, K. N. Galkin, I. M. Chernev, G. D. Ivlev, S. L. Pro-kop’ev, and P. I. Gaiduk, Semiconductors 49, 729 (2015).

    Article  ADS  Google Scholar 

  6. F. Falk and G. Andrä, J. Cryst. Growth 287, 397 (2006).

    Article  ADS  Google Scholar 

  7. M. D. Efremov, V. A. Volodin, L. I. Fedina, A. A. Gutakovski, D. V. Marin, S. A. Kochubei, A. A. Popov, Yu. A. Minakov, and V. N. Ulasyuk, Tech. Phys. Lett. 29, 569 (2003).

    Article  ADS  Google Scholar 

  8. A. V. Emelyanov, A. G. Kazanskii, P. A. Forsh, D. M. Zhigunov, M. V. Khenkin, N. N. Petrova, A. V. Kukin, E. I. Terukov, and P. K. Kashkarov, J. Nanoelectron. Optoelectron. 10, 649 (2015).

    Google Scholar 

  9. C. R. Wronski, J. M. Pearce, J. Deng, V. Vlahos, and R. W. Collins, Thin Solid Films 451–452, 470 (2004).

    Article  Google Scholar 

  10. G. K. Krivyakin, V. A. Volodin, S. A. Kochubei, G. N. Kamaev, A. Purkrt, Z. Remes, R. Fajgar, T. H. Stuchliková, and J. Stuchlik, Semiconductors 50, 935 (2016).

    Article  ADS  Google Scholar 

  11. P. Pierrard, B. Mutaftischev, W. Marine, J. Marfaing, and F. Salvan, Thin Solid Films 111, 141 (1984).

    Article  ADS  Google Scholar 

  12. F. Vega, R. Serna, C. N. Afonso, D. Bermejo, and G. Tejeda, J. Appl. Phys. 75, 7287 (1994).

    Article  ADS  Google Scholar 

  13. M. Mulato, D. Toet, G. Aichmayr, P. V. Santos, and I. Chambouleyron, Appl. Phys. Lett. 70, 3570 (1997).

    Article  ADS  Google Scholar 

  14. O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, J. Appl. Phys. 109, 123108 (2011).

    Article  ADS  Google Scholar 

  15. V. A. Volodin, E. I. Gatskevich, A. V. Dvurechenski, M. D. Efremov, G. D. Ivlev, A. I. Nikiforov, D. A. Orekhov, and A. I. Yakimov, Semiconductors 37, 1315 (2003).

    Article  ADS  Google Scholar 

  16. A. I. Yakimov, A. V. Dvurechenskii, V. A. Volodin, M. D. Efremov, A. I. Nikiforov, G. Yu. Mikhalyov, E. I. Gatskevich, and G. D. Ivlev, Phys. Rev. B 72, 115318 (2005).

    Article  ADS  Google Scholar 

  17. A. V. Dvurechenskii, V. A. Volodin, G. K. Krivyakin, A. A. Shklyaev, S. A. Kochubei, I. G. Neizvestnyi, and J. Stuchlik, Optoelectron., Instrum. Data Process. 52, 496 (2016).

    Article  ADS  Google Scholar 

  18. G. K. Krivyakin, V. A. Volodin, A. A. Shklyaev, V. Mortet, J. More-Chevalier, P. Ashcheulov, Z. Remes, T. H. Stuchliková, and J. Stuchlik, Semiconductors 51, 1370 (2017).

    Article  ADS  Google Scholar 

  19. E. I. Gatskevich, G. D. Ivlev, and A. M. Chaplanov, Quantum Electron. 25, 774 (1995).

    Article  ADS  Google Scholar 

  20. G. D. Ivlev and E. I. Gatskevich, Tech. Phys. 57, 803 (2012).

    Article  Google Scholar 

  21. V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko, Optical Properties of Semiconductors (Nauk. Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  22. V. A. Volodin and D. I. Koshelev, J. Raman Spectrosc. 44, 1760 (2013).

    Article  ADS  Google Scholar 

  23. Y. Maeda, Phys. Rev. B 59, 1658 (1995).

    Article  ADS  Google Scholar 

  24. V. A. Volodin, D. V. Marin, V. A. Sachkov, E. B. Gorokhov, H. Rinnert, and M. Vergnat, J. Exp. Theor. Phys. 118, 65 (2014).

    Article  ADS  Google Scholar 

  25. M. D. Efremov, V. V. Bolotov, V. A. Volodin, L. I. Fedina, and E. A. Lipatnikov, J. Phys.: Condens. Matter 8, 273 (1996).

    ADS  Google Scholar 

  26. M. D. Efremov, V. V. Bolotov, V. A. Volodin, S. A. Kochubei, and A. V. Kretinin, Semiconductors 36, 102 (2002).

    Article  ADS  Google Scholar 

  27. V. A. Volodin, M. D. Efremov, A. S. Deryabin, and L. V. Sokolov, Semiconductors 40, 1314 (2006).

    Article  ADS  Google Scholar 

  28. V. A. Volodin, M. D. Efremov, A. I. Yakimov, G. Yu. Mikhalev, A. I. Nikiforov, and A. V. Dvurechenski, Semiconductors 41, 930 (2007).

    Article  ADS  Google Scholar 

  29. J. Bok, Phys. Lett. A 84, 448 (1981).

    Article  ADS  Google Scholar 

  30. V. A. Volodin, T. T. Korchagina, J. Koch, and B. N. Chichkov, Phys. E (Amsterdam, Neth.) 42, 1820 (2010).

  31. T. T. Korchagina, A. K. Gutakovsky, L. I. Fedina, M. A. Neklyudova, and V. A. Volodin, J. Nanosci. Nanotechnol. 12, 8694 (2012).

    Article  Google Scholar 

  32. V. A. Volodin, Mater. Today: Proc. 4, 11402 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Ministry of Education and Science of the Russian Federation, government order, Program of basic research at the Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, no. 0306-2016-0015; the part of the study concerned with growth of samples was supported by the Ministry of Education and Science of the Russian Federation, government order, Program of basic research at the Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of Sciences, no. 0066-2018-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volodin.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, V.A., Krivyakin, G.K., Ivlev, G.D. et al. Crystallization of Amorphous Germanium Films and Multilayer a-Ge/a-Si Structures upon Exposure to Nanosecond Laser Radiation. Semiconductors 53, 400–405 (2019). https://doi.org/10.1134/S1063782619030217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619030217

Navigation