Advertisement

Semiconductors

, Volume 53, Issue 3, pp 296–297 | Cite as

Decomposition of a Solid Solution of Interstitial Magnesium in Silicon

  • V. B. Shuman
  • A. N. LodyginEmail author
  • L. M. Portsel
  • A. A. Yakovleva
  • N. V. Abrosimov
  • Yu. A. Astrov
NONELECTRONIC PROPERTIES OF SEMICONDUCTORS (ATOMIC STRUCTURE, DIFFUSION)
  • 20 Downloads

Abstract

The decomposition of a solid solution of interstitial magnesium Mgi in silicon is studied. Float-Zone dislocation-free single-crystal n-Si with a resistivity of ~8 × 103 Ω cm and oxygen and carbon contents of ~5 × 1014 cm–3 and ~1 × 1015 cm–3 is used in the experiments. The samples are doped using the diffusion sandwich method at T =1100°C followed by quenching. Decomposition of the supersaturated Mgi solid solution is studied by observing the kinetics of increasing the resistivity of doped samples resulting from their annealing in the range T= 400–620°C. It is found that the decomposition is characterized by an activation energy of Ea ≈ 1.6 eV, which is close to the previously determined diffusion activation energy of Mgi in silicon. It is also shown that Si:Mg exhibits stable properties at temperatures not exceeding 400°C, which is important for its possible practical application.

Notes

ACKNOWLEDGMENTS

This study was supported by the Presidium of the Russian Academy of Sciences, program no. 8 “Condensed Matter Physics and Next Generation Materials”.

REFERENCES

  1. 1.
    R. F. Franks and J. B. Robertson, Solid State Commun. 5, 479 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    L. T. Ho and A. K. Ramdas, Phys. Rev. B 5, 462 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    L. T. Ho, Phys. Status Solidi A 28, K73 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. A. Astrov, V. B. Shuman, L. M. Portsel, A. N. Lodygin, S. G. Pavlov, N. V. Abrosimov, V. N. Shastin, and H.-W. Hübers, Phys. Status Solidi A 214, 1700192 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    B. I. Boltaks, M. K. Bakhadyrkhanov, S. M. Gorodetskii, and G. S. Kulikov, Compensated Silicon, Ed. by B. I. Boltaks (Nauka, Leningrad, 1972) [in Russian].Google Scholar
  6. 6.
    F. P. Morin and H. Reiss, J. Chem. Sol. 3, 196 (1957).ADSGoogle Scholar
  7. 7.
    J. R. Carter and R. A. Swalin, J. Appl. Phys. 31, 1191 (1960).ADSCrossRefGoogle Scholar
  8. 8.
    F. S. Ham, J. Phys. Chem. Sol. 6, 335 (1958).ADSCrossRefGoogle Scholar
  9. 9.
    H. Sigmund, J. Electrochem. Soc. 129, 2809 (1982).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. B. Shuman
    • 1
  • A. N. Lodygin
    • 1
    Email author
  • L. M. Portsel
    • 1
  • A. A. Yakovleva
    • 1
  • N. V. Abrosimov
    • 2
  • Yu. A. Astrov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Leibniz Institute for Crystal GrowthBerlinGermany

Personalised recommendations