, Volume 53, Issue 2, pp 255–259 | Cite as

Effect of the Temperature of Photonic Annealing on the Structural and Optical Properties of ZnO Films Synthesized by Dual Magnetron-Assisted Sputtering

  • S. V. ZaitsevEmail author
  • V. S. Vaschilin
  • V. V. Kolesnik
  • M. V. Limarenko
  • D. S. Prokhorenkov
  • E. I. Evtushenko


Zinc-oxide films 1.4 μm in thickness are deposited onto glassy substrates by the dual magnetron-assisted sputtering of zinc targets in an argon and oxygen gas atmosphere. The dependences of the structural and optical characteristics of the ZnO films on the temperature of postdeposition photonic annealing are studied. It is established that an increase in the annealing temperature yields an increase in the degree of crystallinity of the films. Electron microscopy shows that the deposited ZnO coatings are columnar in structure and the microstructure density and crystallite size increase upon annealing. It is found that, at an annealing temperature of 450–650°C, the optical transmittance increases to >90% in the spectral range 400–1100 nm. The experimental results show that the temperature of vacuum photonic annealing has the most profound effect on the final properties of ZnO coatings.



The study was supported by the Ministry of Education and Science of the Russian Federation, government order no. 11.9329.2017/8.9. The study was carried out using equipment of the Center of Advanced Technologies, Belgorod State Technological University.


  1. 1.
    V. Senay, S. Pat, S. Korkmaz, T. Aydogmus, S. Elmas, S. Özen, N. Ekem, and M. Z. Balbag, Appl. Surf. Sci 318, 2 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    V. S. Burakov, N. V. Tarasenko, E. A. Nevar, and M. I. Nedel’ko, Tech. Phys. 56, 245 (2011).CrossRefGoogle Scholar
  3. 3.
    D. T. Phan and G. S. Chung, Appl. Surf. Sci. 257, 4339 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Natsume and H. Sakata, J. Mater. Sci.: Mater. Electron. 12, 87 (2001).Google Scholar
  5. 5.
    Z. Li, Z. Hu, L. Jiang, H. Huang, F. Liu, X. Zhang, Y. Wang, P. Yin, and L. Guo, Mater. Lett. 79, 209 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Suchea, S. Christoulakis, C. Tibeica, M. Katharakis, N. Kornilios, T. Efthimiopoulos, and E. Koudoumas, Appl. Surf. Sci. 254, 5475 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    V. B. Zalesskii, T. R. Leonova, O. V. Goncharova, I. A. Viktorov, V. F. Gremenok, and E. P. Zaretskaya, Fiz. Khim. Tverd. Tela 6, 44 (2005).Google Scholar
  8. 8.
    K. W. Kim, H. S. Son, N. J. Choi, J. Kim, and S. N. Lee, Thin Solid Films 546, 114 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    B. Zhang, B. Yao, S. Wang, Y. Li, C. Shan, J. Zhang, B. Li, Z. Zhang, and D. Shen, J. Alloys Compd. 503, 155 (2010).CrossRefGoogle Scholar
  10. 10.
    A. I. Kuz’michev, Magnetron Sputtering Systems (Avers, Moscow, 2008) [in Russian].Google Scholar
  11. 11.
    D. Manova, J. W. Gerlach, and S. Mändl, Materials 3, 4109 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    J. R. R. Bortoleto, M. Chaves, A. M. Rosa, E. P. da Silva, S. F. Durrant, L. D. Trino, and P. N. Lisboa-Filho, Appl. Surf. Sci. 334, 210 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Nartsev, M. S. Ageeva, D. S. Prokhorenkov, S. V. Zaitsev, S. V. Karatsupa, and V. S. Vashchilin, Vestn. BGTU im. V. G. Shukhova 6, 168 (2013).Google Scholar
  14. 14.
    S. V. Zaitsev, V. M. Nartsev, V. S. Vashchilin, D. S. Prokhorenkov, and E. I. Evtushenko, Nanotechnol. Russ. 11, 280 (2016).CrossRefGoogle Scholar
  15. 15.
    C. W. Hsu, T. C. Cheng, C. H. Yang, Y. L. Shen, J. S. Wu, and S. Y. Wu, J. Alloys Compd. 509, 1774 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Y. Kim, S. W. Kang, B. H. Kong, and H. K. Cho, Phys. B (Amsterdam, Neth.) 401, 408 (2007).Google Scholar
  17. 17.
    A. Purohit, S. Chander, A. Sharma, S. P. Nehra, and M. S. Dhaka, Opt. Mater. 49, 51 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    G. A. Kumar, M. R. Reddy, and K. N. Reddy, J. Phys.: Conf. Ser. 365, 012031 (2012). article/10.1088/1742-6596/365/1/012031/meta.Google Scholar
  19. 19.
    Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, Appl. Surf. Sci. 241, 303 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    S. U. Lee, B. Hong, and J. H. Boo, Funct. Mater. Lett. 3, 119 (2010).CrossRefGoogle Scholar
  21. 21.
    A. L. Mercado, C. E. Allmond, J. G. Hoekstra, and J. M. Fitz-Gerald, Appl. Phys. A 81, 591 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    G. P. Daniel, V. B. Justinvictor, P. B. Nair, K. Joy, P. Koshy, and P. V. Thomas, Phys. B (Amsterdam, Neth.) 405, 1782 (2010).Google Scholar
  23. 23.
    O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. K. Ono, B. R. Cuenya, and H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    E. N. Cho, S. Park, and I. Yun, Curr. Appl. Phys. 12, 1606 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    M. F. Malek, M. H. Mamat, M. Z. Musa, Z. Khusaimi, M. Z. Sahdan, A. B. Suriani, A. Ishak, I. Saurdi, S. A. Rahman, and M. Rusop, J. Alloys Compd. 610, 575 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Zaitsev
    • 1
    Email author
  • V. S. Vaschilin
    • 1
  • V. V. Kolesnik
    • 1
  • M. V. Limarenko
    • 1
  • D. S. Prokhorenkov
    • 1
  • E. I. Evtushenko
    • 1
  1. 1.Belgorod State Technological UniversityBelgorodRussia

Personalised recommendations