Advertisement

Semiconductors

, Volume 53, Issue 2, pp 188–194 | Cite as

Electronic Excitation Energy Transfer in an Array of CdS Quantum Dots on a Quasi-Two-Dimensional Surface

  • N. V. BondarEmail author
  • M. S. Brodyn
  • N. A. Matveevskaya
  • T. G. Beynik
SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

Abstract

The optical spectra of films composed of spherical silicon-dioxide particles coated with small-radius CdS quantum dots are recorded and analyzed. Large shifts of the absorption and photoluminescence bands are detected and studied in relation to the concentration of quantum dots and to the pumping density and wavelength. Analysis of the experimental data shows that the effects are due to electronic excitation energy transfer by particles through the mechanism of tunneling induced by a strong interaction between quantum dots. The results obtained at low pumping densities and different excitation wavelengths make it possible to describe the size distribution of CdS quantum dots. This distribution can be adequately approximated with a Gaussian function.

Notes

ACKNOWLEDGMENTS

The study was supported by the National Academy of Sciences of Ukraine, Program “Fundamental Problems of the Creation of New Nanomaterials and Nanotechnologies”, project NANO no. 2-16-N.

REFERENCES

  1. 1.
    F. Remacle and R. D. Levine, ChemPhysChem 2, 20 (2001).CrossRefGoogle Scholar
  2. 2.
    N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, and M. Zamkov, ACS Energy Lett. 2, 154 (2017).CrossRefGoogle Scholar
  3. 3.
    N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Díaz, J. B. Delehanty, and I. L. Medintz, Chem. Rev. 117, 536 (2016).CrossRefGoogle Scholar
  4. 4.
    A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 118, 6531 (2014).CrossRefGoogle Scholar
  5. 5.
    A. A. Zarubanov, K. S. Zhuravlev, T. A. Duda, and A. V. Okotrub, JETP Lett. 95, 362 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    Dae Gwi Kim, S. Tomita, K. Ohshiro, T. Watanabe, T. Sakai, I-Ya. Chang, and K. Hyeon-Deuk, Nano Lett. 15, 4343 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    T. Hanrath, J. Vac. Sci. Technol. A 30, 030802 (2012).CrossRefGoogle Scholar
  8. 8.
    Fan Xu, L. F. Gerlein, Xin Ma, Ch. R. Haughn, M. F. Doty, and S. G. Cloutier, Materials 8, 1858 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    C. R. Kagan, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 54, 8633 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    R. Koole, P. Liljeroth, C. de Mello Donega, D. Vanmaekelbergh, and A. Meijerink, J. Am. Chem. Soc. 128, 10436 (2006).CrossRefGoogle Scholar
  11. 11.
    H. Dollefeld, H. Weller, and A. Eychmuller, Nano Lett. 1, 267 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    K. N. Lawrence, M. A. Johnson, S. Dolai, A. Kumbhar, and R. Sardar, Nanoscale 7, 11667 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    N. V. Bondar’, M. S. Brodin, A. M. Brodin, and N. A. Matveevskaya, Semiconductors 50, 364 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    M. Alonso, M. Satoh, and K. Miyanami, Powder Technol. 62, 35 (1990).CrossRefGoogle Scholar
  15. 15.
    Z. Adamzhyk, Particles at Interfaces: Interactions, Deposition, Structure (Academic, Amsterdam, Boston, Heidelberg, 2006).Google Scholar
  16. 16.
    J. L. Marïn, R. Riera, and S. A. Cruz, J. Phys.: Condens. Matter 10, 1349 (1998).ADSGoogle Scholar
  17. 17.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).CrossRefGoogle Scholar
  18. 18.
    V. A. Belyakov, K. V. Sydorenko, A. A. Konakov, N. V. Kurova, and V. A. Burdov, Semiconductors 47, 178 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Zarubanov, V. F. Plyusnin, and K. S. Zhuravlev, Semiconductors 51, 576 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    J. Wang, S. J. Xiong, X. L. Wu, T. H. Li, and P. K. Chu, Nano Lett. 10, 1466 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang, and P. K. Chu, Nano Technol. 18, 365603 (2007).Google Scholar
  22. 22.
    M. V. Wolkin, J. Jorne, and P. M. Fauchet, Phys. Rev. Lett. 82, 197 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    U. Resch, A. Eychmiiller, M. Haase, and H. Weller, Langmuir 8, 2215 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Bondar
    • 1
    Email author
  • M. S. Brodyn
    • 1
  • N. A. Matveevskaya
    • 2
  • T. G. Beynik
    • 2
  1. 1.Institute of Physics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute for Single Crystals, National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations