Advertisement

Semiconductors

, Volume 52, Issue 15, pp 1982–1988 | Cite as

Analysis of the Switching Characteristics of MRAM Cells Based on Materials with Uniaxial Anisotropy

  • Iu. A. IusipovaEmail author
ELEMENTS OF INTEGRAL ELECTRONICS
  • 4 Downloads

Abstract

Magnetoresistive random access memory (MRAM) has some advantages over other types of memory. However, MRAM has one substantial drawback: the current density and magnetic field that must be applied to switch the spin-valve free layer inside an MRAM cell are too high. The dependence of the current density and switching magnetic field on the magnetic parameters of the material from which the ferromagnetic layers of a spin valve are fabricated is therefore analyzed. A comparison of the critical characteristics of a spin valve with longitudinal anisotropy shows that cobalt, iron, and alloys of them; cobalt ferroborates; and alloys of cobalt with gadolinium, are promising materials for fabricating spin valves. Bifurcation diagrams of equations that describe the valve switching process are presented and analyzed. The four optimum switching modes of a valve are selected, based on an investigation of the dynamics of the magnetization vector. The magnitudes of the external magnetic field and controlling injection current that correspond to stable MRAM cell switching are compared for a variety of materials. The switching time of an MRAM cell is estimated numerically, and the conditions for its optimum speed are determined. It is established that the most promising materials for spin-valve fabrication are Fe40Co40B20 and Co80Gd20, annealed at 300 and 200°C, respectively.

Keywords:

spin valve magnetoresistive random access memory (MRAM) ferroborates alloys of rare-earth metals anisotropy constants saturation magnetization dissipation factor spin polarization parameter 

Notes

ACKNOWLEDGMENTS

The author thanks Prof. A.I. Popov for his careful reading of my manuscript and his helpful comments on the problem.

REFERENCES

  1. 1.
    J. J. Nowak, R. P. Robertazzi, J. Z. Sun, et al., IEEE Magn. Lett. 7, 3102604 (2016).CrossRefGoogle Scholar
  2. 2.
    J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    N. V. Ostrovskaya, V. A. Skidanov, and Iu. A. Iusipova, Solid State Phenom. 233–234, 431 (2015).CrossRefGoogle Scholar
  4. 4.
    N. V. Ostrovskaya, V. A. Skidanov, and Iu. A. Iusipova, Komp’yut. Issled. Model. 8, 605 (2016).Google Scholar
  5. 5.
    N. V. Ostrovskaya, V. A. Skidanov, and Iu. A. Iusipova, in Collection of Articles of Institute for Design Problems in Microelectronics RAS, Ed. by A. L. Stempkovskii (IPPM RAN, Moscow, 2016), p. 199 [in Russian].Google Scholar
  6. 6.
    C. Kaiser and S. S. Papworth Parkin, US Patent No. US007230265B2 (2007).Google Scholar
  7. 7.
    R. Skomski, Simple Models of Magnetism (Oxford Univ Press, New York, 2008).CrossRefGoogle Scholar
  8. 8.
    P. V. Paluskar, J. J. Attema, G. A. de Wijs, et al., Phys. Rev. Lett. 100, 057205 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    S. X. Huang, T. Y. Chen, and C. L. Chien, Appl. Phys. Lett. 92, 242509 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. Hayakava, S. Ikeda, Y. M. Lee, et al., Jpn. J. Appl. Phys. 44, L1267 (2005).CrossRefGoogle Scholar
  11. 11.
    J. S. Moodera, Kim Tae Hee, C. Tanaka, and C. H. de Groot, Philos. Mag. B 80, 195 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    H. Almasi, D. Reifsnyder Hickey, T. Newhouse-Illige, et al., Appl. Phys. Lett. 106, 182406 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    S. Wang, X. Zhang, J. Li, et al., Appll. Phys. A 104, 415 (2011).Google Scholar
  14. 14.
    N. N. Phuoc and C. K. Ong, J. Appl. Phys. 111, 083920 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    Physical Values, the Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  16. 16.
    T. Kawai, Y. Asai, M. Ohtake, et al., EPJ Web of Conf. 40, 13001 (2013).Google Scholar
  17. 17.
    M. H. Nguyen, C. F. Pai, K. X. Nguyen, et al., Appl. Phys. Lett. 106, 222402 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    S. Ikeda, K. Miura, H. Yamamoto, et al., Nat. Mater. 9, 721 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.Institute for Design Problems in Microelectronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations