, Volume 52, Issue 15, pp 1958–1962 | Cite as

Using Combined Optical Techniques to Control the Shallow Etching Process

  • A. D. VolokhovskiyEmail author
  • N. N. Gerasimenko
  • D. S. Petrakov


Controlling the procedure for etching shallow trench insulation (STI) is part of the CMOS production cycle. Optical scatterometry, which allows the simultaneous replacement of several techniques used earlier, can be used to increase the reliability of and information obtained with this control process. The etching of shallow trench insulation is described in this work using a dimensional scheme that considers features of the actual procedure. Combined means of controlling the etching of shallow trench insulation are presented. The boundaries of optical scatterometry applicability are investigated, and means are considered that can be used beyond these boundaries (particularly in the range below ~20 nm). The proposed procedure allows not only linear dimensions to be controlled, but also the depth of the etching trench and the slope of its walls (which were not controlled earlier) during the production cycle itself. Control of these parameters during the production cycle lowers production costs and improves the reliability of the integrated circuits. The process is substantiated using the example of 180 nm technology, but the possibility of applying the process to smaller design norms is discussed.


metrology process control scatterometry etching shallow trench insulation 



This work was supported by the Russian Science Foundation, project no. 15-19-10054.


  1. 1.
    F.-T. Liou and F. E. Chen, US Patent No. 5130268 A (1992).Google Scholar
  2. 2.
    P. Thony, D. Herisson, D. Henry, et al., in Proceedings of the Conference on Characterization and Metrology for VLSI Technology, 2003, p. 381.Google Scholar
  3. 3.
    H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, Springer, New York, Heidelberg, 2005).Google Scholar
  4. 4.
    J. Opsal, J. Fanton, J. Chen, et al., Thin Solid Films 313–314, 58 (1998).CrossRefGoogle Scholar
  5. 5.
    J. Opsal and H. Chu, Proc. SPIE 4689, 163 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    R. Melzer, C. Hartig, G. Grasshoff, et al., Proc. SPIE 9424, 942429 (2015).CrossRefGoogle Scholar
  7. 7.
    C.-H. Lina, C. Huang, C.-L. Hsu, et al., Proc. SPIE 8324, 832421 (2012).CrossRefGoogle Scholar
  8. 8.
    X. Chen, Y. Shi, H. Jiang, et al., Appl. Surf. Sci. 388, 524 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    D. I. Smirnov, R. M. Giniyatyllin, I. Yu. Zyul’kov, et al., Tech. Phys. Lett. 39, 34 (2013).Google Scholar
  10. 10.
    N. Sullivan, R. Dixson, and B. Bunday, Proc. SPIE 5038, 483 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    H. Gross, M.-A. Henn, S. Heidenreich, et al., Appl. Opt. 51, 7384 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998).Google Scholar
  13. 13.
    O. Polgar, M. Fried, T. Lohner, et al., Surf. Sci. 457, 157 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    P. Leray, G. F. Lorusso, S. Cheng, et al., Proc. SPIE 6518, 65183B (2003).CrossRefGoogle Scholar
  15. 15.
    Y. Ito, A. Higuchi, and K. Omote, Proc. SPIE 9778, 97780L (2016).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. D. Volokhovskiy
    • 1
    • 2
    Email author
  • N. N. Gerasimenko
    • 1
    • 3
  • D. S. Petrakov
    • 1
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.OAO Angstrem-TMoscowRussia
  3. 3.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations