, Volume 52, Issue 15, pp 1976–1981 | Cite as

Patterns of Variation in the External Quantum Efficiency of InGaN/GaN Green LEDs during Accelerated Tests

  • V. A. SergeevEmail author
  • I. V. Frolov
  • A. A. Shirokov
  • O. A. Radaev


The causes and mechanisms of variation in the quantum efficiency and other characteristics of InGaN/GaN heterostructures are actively investigated in various operating modes. The results are presented from an experimental study of the variation in the external quantum efficiency of low-power InGaN/GaN green light-emitting diodes with and without a quantum well in the space–charge region (SCR) of the heterostructure in the accelerated test mode. It is found that after 8 hours of testing at a temperature of 300 K in the pulse mode with a pulse amplitude of 0.5 A, a pulse duration of 100 µs, and a duty cycle of 100, the external quantum efficiency grows for all LEDs without a quantum well in the SCR and diminishes for LEDs with a quantum well throughout the range of operating currents. It is shown that at a low level of injection, the intensity of emission of light emitting diodes without a quantum well in the SCR is determined by recombination processes according to the Shockley–Read–Hall mechanism, while that of LEDs with a quantum well is determined by tunneling–recombination processes. Current training of green LEDs based on InGaN/GaN heterostructures in the forced pulse mode for 4 hours can be used as a technological operation for stabilizing their lighting characteristics, and for identifying potentially unreliable products under conditions of mass production.


LED heterostructure quantum well external quantum efficiency radiative and non-radiative recombination lifetime of charge carriers 



This work was supported by the Russian Foundation for Basic Research, project no. 16-32-60051 mol_a_dk.


  1. 1.
    N. M. Shmidt, A. S. Usikov, E. I. Shabunina, et al., Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt. 15, 46 (2015).Google Scholar
  2. 2.
    L. Rigutti, L. Basirico, A. Cavallini, et al., Semicond. Sci. Technol. 24, 055015 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    G. Verzellesi, D. Saguatti, M. Meneghini, et al., J. Appl. Phys. 114, 071101 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 48, 1079 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Zakgeim, A. S. Pavlyuchenko, and D. A. Bauman, in Proceedings of the 7th All-Russia Conference on Nitrides of Hallium, Indium, Aluminium: Structures and Devices, Moscow, Feb. 1–3, 2010 (Moscow, 2010), p. 105.Google Scholar
  6. 6.
    X. Meng, L. Wang, Z. Hao, et al., Appl. Phys. Lett. 108, 013501 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    T.-S. Kim, B.-J. Ahn, Y. Dong, et al., Appl. Phys. Lett. 100, 071910 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Sergeev, I. V. Frolov, and A. A. Shirokov, Prib. Tekh. Eksp., No. 1, 137 (2014).Google Scholar
  9. 9.
    F. Schubert, Light-Emitting Diodes (Cambridge Univ., Cambridge, 2006).CrossRefGoogle Scholar
  10. 10.
    J. Piprek and S. Nakamura, IEE Proc.-Optoelectron. 149, 145 (2002).CrossRefGoogle Scholar
  11. 11.
    A. N. Kovalev and F. I. Manyakhin, Semiconductors 32, 192 (1998).CrossRefGoogle Scholar
  12. 12.
    E. K. Naimi, S. G. Nikiforov, O. I. Rabinovich, and V. P. Sushkov, Mater. Elektron. Tekh., No. 1, 86 (2009).Google Scholar
  13. 13.
    V. A. Sergeev, I. V. Frolov, and A. A. Shirokov, Izv. Vyssh. Uchebn. Zaved., Elektron. 20, 598 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Sergeev
    • 1
    • 2
    Email author
  • I. V. Frolov
    • 1
  • A. A. Shirokov
    • 1
  • O. A. Radaev
    • 1
    • 2
  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics, Ulyanovsk Branch, Russian Academy of SciencesUlyanovskRussia
  2. 2.Ulyanovsk State Technical UniversityUlyanovskRussia

Personalised recommendations