, Volume 52, Issue 15, pp 1909–1914 | Cite as

Field Characteristics of Spin-Torque Diode Sensitivity in the Presence of a Bias Current

  • A. F. Popkov
  • N. E. Kulagin
  • G. D. DeminEmail author
  • K. A. Zvezdin


The use of the spin-torque diode effect, which is generated upon the current-induced transfer of spin angular momentum in magnetic tunnel junctions, opens the prospect of considerably improving microwave sensitivity in the gigahertz frequency band over that of semiconductor Schottky diodes. In this work, the spin-diode effect of microwave signal rectification in a magnetic tunnel junction upon the resonant excitation of spin waves in the free magnetic layer as a result of the current-induced spin-transfer torque effect is analyzed theoretically. Frequency characteristics of the resonant response of a spin-torque diode to a microwave signal are calculated in the linear macrospin approximation as functions of the direction and value of the applied magnetic field and bias current. It is shown that with zero bias current, the maximum rectified voltage across a junction is obtained in the geometry of mutually perpendicular magnetizations of magnetic layers; as the resonant frequency of oscillations in a magnetic field increases, this voltage drops at the retained equilibrium orientation of spins in the layers. After the bias current is switched on, the resonance amplitude of forced oscillations of the free layer spins upon microwave excitation grows sharply at the critical point of the spin-torque diode’s loss of equilibrium state stability. The linewidth at this point is limited only by nonlinear effects. Improving spin-torque diode sensitivity is important for its use in microwave holographic vision systems.


magnetic tunnel junction portable spin-torque diode macrospin model ferromagnetic resonance microwave sensitivity 



This work was supported by the Russian Science Foundation, project no. 16-19-00181.


  1. 1.
    A. A. Tulapurkar, Y. Suzuki, A. Fukushima, et al., Nature (London, U.K.) 438, 339 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    S. Miwa, S. Ishibashi, H. Tomita, et al., Nat. Mater. 13, 50 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    T. Zeng, Y. Zhou, K. W. Lin, et al., IEEE Trans. Magn. 51, 1401204 (2015).Google Scholar
  4. 4.
    L. Fu, Y. S. Gui, L. H. Bai, et al., J. Appl. Phys. 117, 213902 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    C. Wang, Y. T. Cui, J. Z. Sun, et al., J. Appl. Phys. 106, 053905 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    J. Zhu, J. A. Katine, G. E. Rowlands, et al., Phys. Rev. Lett. 108, 197203 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    S. Hemour, Y. Zhao, C. H. P. Lorenz, et al., IEEE Trans. Microwave Theory Technol. 62, 965 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. F. Popkov, N. E. Kulagin, and G. D. Demin, Solid State Commun. 248, 140 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    Z. H. Zhang, Y. S. Gui, L. Fu, et al., Phys. Rev. Lett. 109, 037206 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    Y. S. Gui, Y. Xiao, L. H. Bai, et al., Appl. Phys. Lett. 106, 152403 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. F. Popkov
    • 1
  • N. E. Kulagin
    • 2
  • G. D. Demin
    • 1
    • 3
    Email author
  • K. A. Zvezdin
    • 3
    • 4
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.National Research University Moscow Aviation InstituteMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  4. 4.Prokhorov Institute of General Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations