, Volume 52, Issue 15, pp 1963–1968 | Cite as

Characteristics of Amorphous As2S3 Semiconductor Films Obtained via Spin Coating

  • Hang Thi Nguyen
  • A. O. Yakubov
  • P. I. Lazarenko
  • A. V. Volkova
  • A. A. SherchenkovEmail author
  • S. A. Kozyukhin


Centrifugation is used in fabricating, e.g., films with large areas and/or thicknesses of several micrometers. However, it has yet to be widely employed for chalcogenide compounds, due to their relatively weak solubility in most solvents. Determining the optimum conditions for preparing solutions of chalcogenide compounds and obtaining films via centrifugation is therefore of great interest. Specific features of amorphous arsenic sulfide (As2S3) films prepared via the centrifugation of solutions in n-butylamine have been studied. These films were characterized by means of X-ray diffraction analysis, IR spectroscopy, atomic-force microscopy and Raman spectroscopy. It was shown that amorphous As2S3 films have a greater elasticity modulus than those of analogous composition produced via thermal evaporation in vacuum, or As2S3 glass. A structural model based on arsenic sulfide clusters whose surfaces are bound by negatively and positively charged ions is used to explain the experimental results obtained in this work. DC measurements show that the amorphous films exhibit semiconductor-type conductivity. Their room temperature conductivity is ~10−15 S/cm, which indicates good dielectric properties. The films are optically transparent starting from the yellow spectral range, making them promising functional materials for engineering applications in optics and photonics.


As2S3 amorphous films centrifugation technology modulus of elasticity optical properties electrical conductivity 



The authors are grateful to O.S. Zilova (National Research University of Electronic Technology) for performing our microhardness measurements, S.A. Klimin (Institute of Spectroscopy, Russian Academy of Sciences) for obtaining our Raman spectra, and Cand. Sci. (Chem.) O.V. Boitsova (Institute of General and Inorganic Chemistry, Russian Academy of Sciences) for her assistance in performing our X-ray phase analysis of the films.

This work was supported by Basic Research Program no. 1 of the Russian Academy of Sciences, “Nanostructures: Physics, Chemistry, Biology, and the Fundamentals of Technologies.” It was performed on equipment at the Microsystems Technology and Electronic Hardware Components resource center at the National Research University of Electronic Technology, with support from the RF Ministry of Education and Science.


  1. 1.
    S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer Science, New York, 2009).CrossRefGoogle Scholar
  2. 2.
    A. V. Kolobov and J. Tominaga, Chalcogenides. Metastability and Phase Change Phenomena (Springer, Berlin, Heidelberg, 2012).Google Scholar
  3. 3.
    S. Kasap, J. B. Frey, G. Bele, et al., Sensors 11, 5112 (2011).CrossRefGoogle Scholar
  4. 4.
    A. I. Popov, Physics and Technology of Disordered Semiconductors (Mosk. Energ. Inst., Moscow, 2008) [in Russian].Google Scholar
  5. 5.
    A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Application (Springer, Berlin, 2007).Google Scholar
  6. 6.
    D. Bimberg, Semiconductor Nanostructures (Springer, Berlin, Heidelberg, 2008).CrossRefGoogle Scholar
  7. 7.
    P. Petkov, W. Kulisch, and C. Popov, Nanostructured Materials for Advanced Technological Applications (Springer, Netherlands, 2009).Google Scholar
  8. 8.
    H. Fu and S. W. Tsang, Nanoscale 4, 2187 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M.-R. Gao, Y.-F. Xu, J. Jianga, and S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013).CrossRefGoogle Scholar
  10. 10.
    A. Qurashi, Metal Chalcogenide Nanostructures for Renewable Energy Applications (Wiley, New York, 2015).Google Scholar
  11. 11.
    H. Gleiter, Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
  12. 12.
    Glossary of Nanotechnology and Related Terms, Ed. by S. V. Kalyuzhnyi (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  13. 13.
    Z. U. Borisova, Chalcogenide Semiconductor Glasses (Leningr. Gos. Univ., Leningrad, 1983).Google Scholar
  14. 14.
    G. C. Chern and I. Lauks, J. Appl. Phys., No. 53, 6979 (1982).Google Scholar
  15. 15.
    Ch. Markos, S. N. Yannopoulos, and K. Vlachos, Opt. Express 20, 1481 (2013).Google Scholar
  16. 16.
    G. C. Chern and I. Lauks, J. Appl. Phys. 54, 2701 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    K. H. Norian, G. C. Chern, and I. Lauks, J. Appl. Phys. 55, 3795 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    K. Palka, T. Syrovy, S. Schroter, et al., Opt. Mater. Express 4, 384 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    S. Shutina, M. Klebanov, V. Lyubin, et al., Thin Solid Films 261, 263 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Zha, M. Waldmann, and C. B. Arnold, Opt. Mater. Express. 3, 1259 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    Nguen Tkhi Khang, E. V. Tekshina, P. I. Lazarenko, et al., Ross. Tekhnol. Zh. 5, 51 (2017).Google Scholar
  22. 22.
    A. Feltz, Amorphous Inorganic Materials and Glasses (Wiley, New York, 1993; Mir, Moscow, 1986).Google Scholar
  23. 23.
    N. Starbov, K. Starbova, and J. Dikova, J. Non-Cryst. Solids 139, 222 (1992).ADSCrossRefGoogle Scholar
  24. 24. Accessed November 1, 2017.Google Scholar
  25. 25.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Mir, Moscow, 1991; Wiley, New York, 1986).Google Scholar
  26. 26.
    S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, Opt. Lett. 36, 534 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    Lingmin Liao and Chunxu Pan, Soft Nanosci. Lett. 1, 16 (2011).Google Scholar
  28. 28.
    N. T. Shchurova and N. D. Savchenko, J. Optoelectron. Adv. Mater. 3, 491 (2001).Google Scholar
  29. 29.
    N. F. Mott and E. A. Davis, Electron Procuresses in Non-Crystalline Materials (Clarendon, Oxford, 1979; Mir, Moscow, 1982).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Hang Thi Nguyen
    • 1
  • A. O. Yakubov
    • 2
  • P. I. Lazarenko
    • 2
  • A. V. Volkova
    • 2
  • A. A. Sherchenkov
    • 2
    Email author
  • S. A. Kozyukhin
    • 3
    • 4
  1. 1.Moscow State Pedagogical UniversityMoscowRussia
  2. 2.National Research University of Electronic TechnologyMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  4. 4.National Research Tomsk State UniversityTomskRussia

Personalised recommendations