Advertisement

Semiconductors

, Volume 52, Issue 15, pp 1969–1972 | Cite as

Investigating the RTA Treatment of Ohmic Contacts to n-Layers of Heterobipolar Nanoheterostructures

  • V. I. EgorkinEmail author
  • V. E. Zemlyakov
  • A. V. Nezhentsev
  • V. I. Garmash
TECHNOLOGICAL PROCESSES AND ROUTES
  • 6 Downloads

Abstract

The preparation of ohmic contacts to heterobipolar nanostructures has a number of characteristic features. In addition to the basic requirement of minimizing contact resistance, contacts to this type of structures have a transition layer whose depth of penetration must not exceed the emitter layer’s thickness, due to the possibility of short-circuiting the emitter base pn junction. In this work, the effect the main technological parameters of rapid thermal annealing have on a contact’s characteristics are examined, and the process of obtaining a low-resistance ohmic contact to heterobipolar transistor layers is optimized. Ohmic contacts to the n-layers of heterobipolar nanoheterostructures based on gallium arsenide and produced via layer-by-layer electron-beam deposition of Ge/Au/Ni/Au are considered. The diffusion distribution profiles of doping with Ge impurities are calculated as a function of the time and temperature of rapid thermal annealing, and are examined via scanning electron microscopy. It is found that rapid thermal annealing for 60 s at a temperature of 398°C yields ohmic contacts with low resistance, smooth surface morphology, and the minimum size of the transition layer.

Keywords:

ohmic contacts doping heterobipolar nanoheterostructures 

Notes

ACKNOWLEDGMENTS

This work was supported by the RF Ministry of Education and Science, contract no. 14.578.21.0212, unique identifier RFMEFI57816X0212.

REFERENCES

  1. 1.
    A. Iliadis and K. E. Singer, Solid State Commun. 49, 99 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    L. C. Wang, S. S. Lau, E. K. Hsieh, and J. R. Velebir, Appl. Phys. Lett. 54, 2677 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    K. A. Jones, E. H. Linfield, and J. E. F. Frost, Appl. Phys. Lett. 69, 4197 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    T.-J. Kim and P. H. Holloway, Crit. Rev. Solid State Mater. Sci. 22, 239 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    H.-Ch. Lin, S. Senanayake, and K.-Y. Cheng, IEEE Trans. Electron Dev. 50, 880 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    E. J. Koop, M. J. Iqbal, F. Limbach, et al., Semicond. Sci. Technol. 28, 1 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Sarma, J. Appl. Phys. 56, 2703 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    E. Nebauer and M. Trapp, Phys. Status Solidi A 84, 39 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    R. P. Gupta and W. S. Khokle, Solid State Electron. 28, 823 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    V. Egorkin, V. Zemlyakov, A. Nezhentsev, and V. Garmash, Russ. Microelectron. 44, 1 (2017).Google Scholar
  11. 11.
    M. S. Shur, GaAs Devices and Circuits (Springer Science, New York, 2013).Google Scholar
  12. 12.
    A. Christou, Solid State Electron. 22, 141 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Egorkin
    • 1
    Email author
  • V. E. Zemlyakov
    • 1
  • A. V. Nezhentsev
    • 1
  • V. I. Garmash
    • 1
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia

Personalised recommendations