, Volume 52, Issue 15, pp 1942–1946 | Cite as

Determining the Concentration of Free Electrons in n-InSb from Far-Infrared Reflectance Spectra with Allowance for Plasmon–Phonon Coupling

  • I. M. Belova
  • A. G. Belov
  • V. E. Kanevsky
  • A. P. LysenkoEmail author


Contactless nondestructive testing is a means for determining the concentration of free electrons N in indium antimonide (InSb) samples from far-infrared reflectance spectra recorded at room temperature. A computer program capable of determining the characteristic wave number from the Kramers–Kronig relation is developed. The calculated calibration dependence makes it possible to determine the electron concentration from the known characteristic wave number. It is shown that this dependence is described by a cubic polynomial. In the calculations, the energy dependence of the electron effective mass is taken into account. It is established that, in determining the electron concentration, account must be taken of plasmon–phonon coupling, specifically at N ≤ 5 × 1017 cm–3. The systematic error introduced into the determination of N by disregard of plasmon–phonon coupling is estimated. The software elaborated here makes it possible to calculate the electron concentration N from experimental reflectance spectra and to store and process the results. The software is tested by the example of the reflectance spectrum of heavily doped n-InSb.


reflectance spectrum plasmon–phonon coupling indium animonide concentration of free electrons 



We are grateful to E.V. Molodtsova (AO Giredmet) for providing our samples, and to N.V. Pashkova (AO Giredmet) for making our optical measurements.


  1. 1.
    G. N. Galkin, L. M. Blinov, V. S. Vavilov, and A. G. Solomatin, JETP Lett. 7, 69 (1968).ADSGoogle Scholar
  2. 2.
    A. I. Belogorokhov, A. G. Belov, and P. L. Petrovich, Opt. Spectrosc. 63, 765 (1987).ADSGoogle Scholar
  3. 3.
    A. I. Belogorokhov, L. I. Belogorokhova, A. G. Belov, and E. P. Rashevskaya, Sov. Phys. Semicond. 25, 722 (1991).Google Scholar
  4. 4.
    M. K. Sharov, Semiconductors 48, 299 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. G. Rokakh, M. I. Shishkin, A. A. Skaptsov, and V. A. Puzynya, Prikl. Fiz., No. 5, 58 (2014).Google Scholar
  6. 6.
    B. B. Varga, Phys. Rev. A 137, 1896 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    K. S. Singwi and M. P. Tosi, Phys. Rev. 147, 658 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Volodin, M. D. Efremov, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Bolotov, V. A. Sachkov, E. A. Galaktionov, and A. V. Kretinin, JETP Lett. 71, 477 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    N. P. Stepanov and V. M. Grabov, Izv. RGPU im. Ger-tsena 4 (8), 52 (2004).Google Scholar
  10. 10.
    A. G. Belov, I. A. Denisov, V. E. Kanevskii, et al., Izv. Vyssh. Uchebn. Zaved., Elektron. 21, 270 (2016).Google Scholar
  11. 11.
    P. Yu and M. Cardona, Fundamentals of Semiconductor Physics (Springer, New York, 1996; Fizmatlit, Moscow, 2002).Google Scholar
  12. 12.
    E. A. Vinogradov and L. K. Vodop’yanov, Kratk. Soobshch. Fiz., No. 11, 29 (1972).Google Scholar
  13. 13.
    A. I. Belogorokhov and L. I. Belogorokhova, Phys. Solid State 43, 1765 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).ADSCrossRefGoogle Scholar
  15. 15.
    J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971; Mir, Moscow, 1973).Google Scholar
  16. 16.
    O. Madelung, Physics of III–V Compounds (Mir, Moscow, 1967; Wiley, New York, 1964)Google Scholar
  17. 17.
    V. G. Orlov and G. S. Sergeev, Phys. Solid State 55, 2215 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. M. Belova
    • 1
  • A. G. Belov
    • 2
  • V. E. Kanevsky
    • 2
  • A. P. Lysenko
    • 3
    Email author
  1. 1.Moscow Technological UniversityMoscowRussia
  2. 2.AO GiredmetMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations