Advertisement

Semiconductors

, Volume 52, Issue 15, pp 1936–1941 | Cite as

Effect of the Plasma Functionalization of Carbon Nanotubes on the Formation of a Carbon Nanotube–Nickel Oxide Composite Electrode Material

  • A. V. AlekseyevEmail author
  • E. A. Lebedev
  • I. M. Gavrilin
  • E. P. Kitsuk
  • R. M. Ryazanov
  • A. A. Dudin
  • A. A. Polokhin
  • D. G. Gromov
ELECTRONICS MATERIALS
  • 7 Downloads

Abstract

The unique properties of carbon nanotubes (CNTs) make these systems promising for the production of composite electrode materials based on a combination of CNTs and transition metal oxides. The effect the parameters of the functionalization of vertically aligned CNT arrays in mixed argon–oxygen high-frequency plasma have on the structural characteristics of CNTs is studied by Raman spectroscopy. The effect the duration of treatment at higher partial argon consumption and low total gas consumption of the working mixture has on the distribution of nickel oxide over a CNT array deposited via SILAR is determined. Results from scanning electron microscopy show that lengthening the duration of functionalization from 30 to 1200 s allows the depth of coating a CNT surface with a nickel oxide layer to be increased from 300 nm to 2.5 μm. Composite structures produced in this work can be used as electrodes of supercapacitors.

Keywords:

functionalization of carbon nanotubes plasma CNT nickel oxide SILAR composite supercapacitor 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 16-19-10625.

REFERENCES

  1. 1.
    Z. Ren, Y. Lan, and Y. Wang, Aligned Nano Science and Technology. Carbon Nanotubes Physics, Concepts, Fabrication and Devices (Springer, Berlin, Heidelberg, 2013).Google Scholar
  2. 2.
    K. Kar, J. Pandey, and S. Rana, Handbook of Polymer Nanocomposites. Processing, Performance and Application, Vol. B: Carbon Nanotube Based Polymer Composites (Springer, Berlin, Heidelberg, 2015).Google Scholar
  3. 3.
    S. Dörfler, I. Felhösi, T. Marek, et al., J. Power Sources 227, 218 (2013).CrossRefGoogle Scholar
  4. 4.
    D. Eder, Chem. Rev. 110, 1348 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Zhi, C. Xiang, J. Li, et al., Nanoscale 5, 72 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    E. V. Hooijdonk, C. Bittencourt,  R. Snyders,  and J.-F. Colomer, Beilstein J. Nanotechnol. 4, 129 (2013).CrossRefGoogle Scholar
  7. 7.
    M. R. Loos, J. Nahorny, and L. C. Fontana, Curr. Org. Chem. 17, 1880 (2013).CrossRefGoogle Scholar
  8. 8.
    C. Chen, B. Liang, A. Ogino, et al., J. Phys. Chem. C 113, 7659 (2009).CrossRefGoogle Scholar
  9. 9.
    C. Chen, A. Ogino, X. Wang, and M. Nagatsu, Diamond Relat. Mater. 20, 153 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    B. Ruelle, A. Felten, J. Ghijsen, et al., J. Phys. D: Appl. Phys. 68, 1008 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Alekseyev
    • 1
    Email author
  • E. A. Lebedev
    • 1
  • I. M. Gavrilin
    • 1
  • E. P. Kitsuk
    • 2
  • R. M. Ryazanov
    • 1
    • 2
  • A. A. Dudin
    • 3
  • A. A. Polokhin
    • 1
  • D. G. Gromov
    • 1
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.SMC “Technological Centre”MoscowRussia
  3. 3.Institute of Nanotechnologies of Microelectronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations