Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1905–1908 | Cite as

A Search for Asymmetric Barrier Layers for 1550 nm Al-Free Diode Lasers

  • F. I. ZubovEmail author
  • M. E. Muretova
  • L. V. Asryan
  • E. S. Semenova
  • M. V. Maximov
  • V. V. Korenev
  • A. V. Savelyev
  • A. E. Zhukov
LASERS AND OPTOELECTRONIC DEVICES
  • 13 Downloads

Abstract

A search for materials suitable for implementation of 1.55 µm Al-free diode lasers based on InP with asymmetric barrier (AB) layers is conducted. It is shown that a very high (over 106) suppression ratio of the parasitic electron flux can be achieved using common III–V alloys for the ABs. Hence placing such ABs in the immediate vicinity of the active region should completely suppress the parasitic recombination in the waveguide. Several optimal AB designs are proposed that are based on one of the following alloys: Al-free GaInPSb, ternary AlInAs, or quaternary AlGaInAs with a low Al-content. As an important and beneficial byproduct of utilization of such ABs, an improvement of majority carrier capture into the active region occurs.

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (grant no. 16-29-03123) and the Russian Ministry of Education and Science (project 3.9787.2017/8.9). L.V.A. also acknowledges the U.S. Army Research Office (Grant no. W911NF-17-1-0432). E.S.S. also acknowledges the Villum Fonden via YIP QUEENs.

REFERENCES

  1. 1.
    L. V. Asryan and S. Luryi, Solid-State Electron. 47, 205 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    C. Frevert, P. Crump, F. Bugge, S. Knigge, and G. Erbert, Semicond. Sci. Technol. 31, 025003 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Zhukov, N. V. Kryzhanovskaya, F. I. Zubov, Yu. M. Shernyakov, M. V. Maximov, E. S. Semenova, K. Yvind, and L. V. Asryan, Appl. Phys. Lett. 100, 021107 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    F. I. Zubov, M. V. Maximov, Yu. M. Shernyakov, N. V. Kryzhanovskaya, E. S. Semenova, K. Yvind, L. V. Asryan, and A. E. Zhukov, Electron. Lett. 51, 1106 (2015).CrossRefGoogle Scholar
  5. 5.
    T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, Appl. Phys. Lett. 105, 071101 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    J. Piprek and J. K. White, and A. J. Spring Thorpe, IEEE J. Quantum Electron. 38, 1253 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    M. Krakowski, M. Lecomte, N. Michel, M. Calligaro, M. Carbonnelle, M. Tran, M. Lamponi, C. Cayron, V. Ligeret, J. Bébé Manga Lobé, R. Mostallino, N. von Bandel, A. Larrue, Y. Robert, E. Vinet, O. Drisse, M. Garcia, and O. Parillaud, Proc. SPIE 9370, 93702C (2015).CrossRefGoogle Scholar
  8. 8.
    F. I. Zubov, E. S. Semenova, I. V. Kulkova, K. Yvind, N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, Semiconductors 51, 1332 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    F. I. Zubov, M. E. Muretova, L. V. Asryan, E. S. Seme-nova, M. V. Maximov, and A. E. Zhukov, J. Appl. Phys. 124, 133105 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. I. Zubov
    • 1
    Email author
  • M. E. Muretova
    • 1
  • L. V. Asryan
    • 2
  • E. S. Semenova
    • 3
  • M. V. Maximov
    • 1
  • V. V. Korenev
    • 1
  • A. V. Savelyev
    • 1
  • A. E. Zhukov
    • 1
  1. 1.St. Petersburg National Research Academic University of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.DTU Fotonik, Department of Photonics Engineering, Technical University of DenmarkKongens LyngbyDenmark

Personalised recommendations