Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1875–1878 | Cite as

Fabrication and DC/AC Characterization of 3-Terminal Ferromagnet/Silicon Spintronics Devices

  • A. S. Tarasov
  • A. V. Lukyanenko
  • I. A. Bondarev
  • M. V. Rautskii
  • F. A. Baron
  • T. E. Smolyarova
  • I. A. Yakovlev
  • S. N. Varnakov
  • S. G. Ovchinnikov
  • N. V. Volkov
SPIN-RELATED PHENOMENA IN NANOSTRUCTURES
  • 18 Downloads

Abstract

CMOS and SOI technology compatible structures and devices are currently intensively investigated by many research groups, since various effects observed in such structures can be relatively easy implemented in electronic devices thereby expanding their functionality. The most promising is the research and development of spintronic devices, which will allow using both electron charge and spin degrees of freedom for transmission, storage and processing of information. In this work we report the fabrication process of 3-terminal (3-T) ferromagnet/silicon devices of two types. First is the planar Fe3Si/Si 3-T structure with 5 μm gap between closest ferromagnetic electrodes. Second is silicon nanowire back-gate transistor with Fe film source and drain synthesized on SOI substrate. Transport and magnetotransport properties of both devices are investigated.

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund project no. 18-42-243022.

This work is partially supported by the Ministry of Education and Science of the Russian Federation and by Siberian Branch of the Russian Academy of Sciences (project II.8.70) and Fundamental research program of the Presidium of the RAS no. 32 “Nanostructures: physics, chemistry, biology, basics of technologies”.

REFERENCES

  1. 1.
    S. Sugahara and M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    O. Txoperena and F. Casanova, J. Phys. D: Appl. Phys. 49, 133001 (2016).CrossRefGoogle Scholar
  3. 3.
    K. Hamaya, K. Ueda, Y. Kishi, Y. Ando, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 93, 132117 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Tran, H. Jaffres, C. Deranlot, J.-M. George, A. Fert, A. Miard, and A. Lemaitre, Phys. Rev. Lett. 102, 036601 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    I. A. Yakovlev, S. N. Varnakov, B. A. Belyaev, S. M. Zharkov, M. S. Molokeev, I. A. Tarasov, and S. G. Ovchinnikov, JETP Lett. 99, 527 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    A. S. Tarasov, A. V. Lukyanenko, I. A. Tarasov, I. A. Bondarev, T. E. Smolyarova, N. N. Kosyrev, V. A. Komarov, I. A. Yakovlev, M. N. Volochaev, L. A. Solovyov, A. A. Shemukhin, S. N. Varnakov, S. G. Ovchinnikov, G. S. Patrin, and N. V. Volkov, Thin Solid Films 642, 20 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    R Jansen, S. P. Dash, S. Sharma, and B. C. Min, Semicond. Sci. Technol. 27, 083001 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Tarasov, I. A. Bondarev, M. V. Rautskii, A. V. Lukyanenko, I. A. Tarasov, S. N. Varnakov, S. G. Ovchinnikov, and N. V. Volkov, Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques 12(4), pp. 633–637 (2018).Google Scholar
  10. 10.
    S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, Nanotechnology 16, 1482 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Tarasov
    • 1
    • 2
  • A. V. Lukyanenko
    • 1
    • 2
  • I. A. Bondarev
    • 1
    • 2
  • M. V. Rautskii
    • 1
  • F. A. Baron
    • 1
  • T. E. Smolyarova
    • 1
    • 2
  • I. A. Yakovlev
    • 1
  • S. N. Varnakov
    • 1
  • S. G. Ovchinnikov
    • 1
    • 2
  • N. V. Volkov
    • 1
  1. 1.Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Institute of Engineering Physics and Radio Electronics, Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations