Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1798–1800 | Cite as

Resonant and Nonresonant Nonlinear Absorption in Colloidal Core/Shell Semiconductor Nanoplatelets

  • A. M. Smirnov
  • A. D. GolinskayaEmail author
  • D. V. Przhiyalkovskii
  • M. V. Kozlova
  • B. M. Saidzhonov
  • R. B. Vasiliev
  • V. S. Dneprovskii
EXCITONS IN NANOSTRUCTURES
  • 37 Downloads

Abstract

Nonlinear absorption of colloidal solution of core/shell CdSe/CdS nanoplatelets (NPLs) in the case of resonant and nonresonant stationary excitation of the electron/light-hole and electron/heavy-hole exciton transitions was investigated. We have revealed the induced bleaching simultaneously of both exciton transitions. The peculiarities of the nonlinear change in absorption were associated with saturation of exciton transitions absorption due to phase space filling, energy up- and down-conversion mechanisms.

Notes

ACKNOWLEDGMENTS

This work was partly supported by the Russian Foundation for Basic Research (no. 18-02-00719). A.D. Golinskaya acknowledges the financial support of Special scholarship for PhD students of the Physics Faculty of Moscow State University.

REFERENCES

  1. 1.
    K. Grove-Rasmussen, H. I. Jorgensen, T. Hayashi, et al., Nano Lett. 8, 1055 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, JETP Lett. 95, 521 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, Eur. Phys. J. B 85, 249 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 152, 1545 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    L. D. Contreras-Pulido, J. Splettstoesser, M. Governale, et al., Phys. Rev. B 85, 075301 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and Al. L. Efros, Nat. Mater. 10, 936 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    S. Ithurria and B. Dubertret, J. Am. Chem. Soc. 130, 16504 (2008).CrossRefGoogle Scholar
  9. 9.
    B. Mahler, B. Nadal, C. Bouet, G. Patriarche, and B. Dubertret, J. Am. Chem. Soc. 134, 18591 (2012).CrossRefGoogle Scholar
  10. 10.
    Z. Chen, B. Nadal, B. Mahler, H. Aubin, and B. Dubertret, Adv. Funct. Mater. 24, 295 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Naeem, Fr. Masia, S. Christodoulou, I. Moreels, P. Borri, and W. Langbein, Phys. Rev. B 91, 121302 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    N. N. Shlenskaya, Y. Yao, T. Mano, T. Kuroda, A. V. Garshev, V. F. Kozlovskii, A. M. Gaskov, R. B. Vasiliev, and K. Sakoda, Chem. Mater. 29, 579 (2017).CrossRefGoogle Scholar
  13. 13.
    A. Smirnov, A. Golinskaya, K. Ezhova, M. Kozlova, and V. Dneprovskii, in Proceedings of SPIE Photonics Europe, Belgium, 2016, Proc. SPIE 9889, 98890R (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. M. Smirnov, A. D. Golinskaya, K. V. Ezhova, M. V. Kozlova, V. N. Mantsevich, and V. S. Dneprovskii, J. Exp. Theor. Phys. 125, 890 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Smirnov
    • 1
  • A. D. Golinskaya
    • 2
    Email author
  • D. V. Przhiyalkovskii
    • 2
  • M. V. Kozlova
    • 2
  • B. M. Saidzhonov
    • 2
  • R. B. Vasiliev
    • 2
  • V. S. Dneprovskii
    • 2
  1. 1.Kotel’nikov IRE RASMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations