Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1890–1893 | Cite as

Absorption in Finite-Length Chevron-Type Graphene Nanoribbons

  • V. A. Saroka
  • H. Abdelsalam
  • V. A. Demin
  • D. Grassano
  • S. A. Kuten
  • A. L. Pushkarchuk
  • O. Pulci
GRAPHENE

Abstract

Using a combination of the density functional theory and tight-binding calculations, we study electronic and optical properties of asymmetric chevron-type graphene nanoribbons recently synthesized with atomic precision. We demonstrate that the low-energy optical selection rules in such infinite chiral ribbons are more reminiscent of those for zigzag rather than for armchair ribbons. It is also shown that, starting from about 25 nm long ribbons, the low-energy absorption and therefore the selection rules of infinitely long ribbons are well reproduced in the finite cluster approach. Hence, ribbons longer than 25 nm (about 28 unit cells) can be treated as infinitely long ones.

Notes

ACKNOWLEDGMENTS

The work is supported by H2020 RISE project CoExAN (grant no. H2020-644076) and the Belarus State Scientific Program “Interdisciplinary Research and Future Technologies, Convergence-2020”. HA is very grateful to Prof. Medhat Ibrahim for the help in the DFT calculations using Gaussian 09 software.

REFERENCES

  1. 1.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature (London, U.K.) 466, 470 (2010).CrossRefGoogle Scholar
  2. 2.
    T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii, Nat. Commun. 5, 3189 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Radocea, T. Sun, T. H. Vo, A. Sinitskii, N. R. Aluru, and J. W. Lyding, Nano Lett. 17, 170 (2017).CrossRefGoogle Scholar
  4. 4.
    J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, and R. Fasel, Nat. Nanotechnol. 9, 896 (2014).CrossRefGoogle Scholar
  5. 5.
    P. H. Jacobse, A. Kimouche, T. Gebraad, M. M. Ervasti, J. M. Thijssen, P. Liljeroth, and I. Swart, Nat. Commun. 8, 119 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P. S. Weiss, N. Asao, and T. Hitosugi, ACS Nano 8, 9181 (2014).CrossRefGoogle Scholar
  7. 7.
    P. Han, K. Akagi, F. Federici Canova, R. Shimizu, H. Oguchi, S. Shiraki, P. S. Weiss, N. Asao, and T. Hitosugi, ACS Nano 9, 12035 (2015).CrossRefGoogle Scholar
  8. 8.
    F. Schulz, P. H. Jacobse, F. F. Canova, J. van der Lit, D. Z. Gao, A. van den Hoogenband, P. Han, R. J. M. Klein Gebbink, M.-E. Moret, P. M. Joensuu, I. Swart, and P. Liljeroth, J. Phys. Chem. C 121, 2896 (2017).CrossRefGoogle Scholar
  9. 9.
    D. G. de Oteyza, A. García-Lekue, M. Vilas-Varela, N. Merino-Díez, E. Carbonell-Sanroma, M. Corso, G. Vasseur, C. Rogero, E. Guitian, J. I. Pascual, J. E. Ortega, Y. Wakayama, and D. Peña, ACS Nano 10, 9000 (2016).CrossRefGoogle Scholar
  10. 10.
    N. Merino-Díez, J. Li, A. Garcia-Lekue, G. Vasseur, M. Vilas-Varela, E. Carbonell-Sanroma, M. Corso, J. E. Ortega, D. Peña, J. I. Pascual, and D. and G. de Oteyza, J. Phys. Chem. Lett. 9, 25 (2018).CrossRefGoogle Scholar
  11. 11.
    V. A. Saroka and K. G. Batrakov, Russ. Phys. J. 59, 633 (2016).CrossRefGoogle Scholar
  12. 12.
    V. A. Saroka, K. G. Batrakov, and L. A. Chernozatonskii, Phys. Solid State 56, 2135 (2014).CrossRefGoogle Scholar
  13. 13.
    V. A. Saroka, K. G. Batrakov, V. A. Demin, and L. A. Chernozatonskii, J. Phys.: Condens. Matter 27, 145305 (2015).Google Scholar
  14. 14.
    J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
  15. 15.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  16. 16.
    C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Lett. 7, 825 (2007).CrossRefGoogle Scholar
  17. 17.
    B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Phys. Rev. B 66, 035412 (2002).CrossRefGoogle Scholar
  19. 19.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, et al., J. Phys.: Condens. Matter 29, 465901 (2017).Google Scholar
  20. 20.
    D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).CrossRefGoogle Scholar
  21. 21.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).MathSciNetCrossRefGoogle Scholar
  22. 22.
    H. Abdelsalam, M. H. Talaat, I. Lukyanchuk, M. E. Portnoi, and V. A. Saroka, J. Appl. Phys. 120, 014304 (2016).CrossRefGoogle Scholar
  23. 23.
    V. A. Saroka, I. Lukyanchuk, M. E. Portnoi, and H. Abdelsalam, Phys. Rev. B 96, 085436 (2017).CrossRefGoogle Scholar
  24. 24.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  25. 25.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford, CT, 2010).Google Scholar
  27. 27.
    V. A. Saroka, M. V. Shuba, and M. E. Portnoi, Phys. Rev. B 95, 155438 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Saroka
    • 1
  • H. Abdelsalam
    • 2
  • V. A. Demin
    • 3
  • D. Grassano
    • 5
  • S. A. Kuten
    • 1
  • A. L. Pushkarchuk
    • 1
    • 4
  • O. Pulci
    • 5
  1. 1.Institute for Nuclear Problems, Belarusian State UniversityMinskBelarus
  2. 2.Department of Theoretical Physics, National Research CenterCairoEgypt
  3. 3.Emanuel Institute of Biochemical Physics, RASMoscowRussia
  4. 4.Institute of Physical Organic Chemistry, NASMinskBelarus
  5. 5.Department of Physics, University of Rome Tor VergataRomeItaly

Personalised recommendations