Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1809–1812 | Cite as

Effect of the Conductive Channel Cut-Off on Operation of n+nn+ GaN NW-Based Gunn Diode

  • A. M. MozharovEmail author
  • A. A. Vasiliev
  • F. E. Komissarenko
  • A. D. Bolshakov
  • G. A. Sapunov
  • V. V. Fedorov
  • G. E. Cirlin
  • I. S. Mukhin
INFRARED MICROWAVE PHENOMENA IN NANOSTRUCTURES
  • 21 Downloads

Abstract

Nowadays modern science and technology require development of efficient electromagnetic emitters covering far GHz and THz ranges. Semiconductor elements with negative differential resistance (NDR) such as Gunn diodes based on GaAs and InP are well-established powerful microwave emitters. In this work the Gunn diode structure based on single GaN nanowire with the potential of THz device development was proposed and investigated both theoretically and experimentally. According to the results of the numerical modeling, the Gunn generation can be obtained in the proposed geometry. Dependence of the doping concentration on the NW length necessary for the electrons domain formation was obtained. The nanostructures were grown via molecular beam epitaxy technique. Contacts to single nanowires were fabricated with the combination of e-beam lithography and thermal evaporation. It was shown experimentally that the volt-ampere characteristics of the GaN nanowire structure possess current saturation region. Experimental results correspond well to proposed numerical model.

Notes

ACKNOWLEDGMENTS

The authors thank for financial support the Russian Federation President council for grants (MK-6492.2018.2, MK-3632.2017.2 and SP-2324.2018.1), the Russian Foundation for Basic Research (18-32-00899 mol_a), grant of government of the Russian Federation (3.9796.2017/8.9, 16.2593.2017/4.6, 16.2483.2017/4.6 and 08-08).

REFERENCES

  1. 1.
    A. M. Mozharov, A. A. Vasiliev, A. D. Bolshakov, G. A. Sapunov, V. V. Fedorov, G. E. Cirlin, and I. S. Mukhin, Semiconductors 52, 489 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    E. I. Alekseev, A. Eisenbach, D. Pavlidis, and S. M. Hubbard, in Proceedings of the 11th International Symposium on Space Terahertz Technology, 2000, p. 162.Google Scholar
  3. 3.
    A. M. Mozharov, F. E. Komissarenko, A. D. Bolshakov, V. V. Fedorov, G. A. Sapunov, G. E. Cirlin, and I. S. Mukhin, J. Phys.: Conf. Ser. 917, 082017 (2017).Google Scholar
  4. 4.
    V. Bougrov et al., Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).Google Scholar
  5. 5.
    A. A. Vasiliev, A. M. Mozharov, M. M. Rozhavskaya, V. V. Lundin, and I. S. Mukhin, J. Phys.: Conf. Ser. 741, 012007 (2016).Google Scholar
  6. 6.
    A. D. Bolshakov, A. M. Mozharov, G. A. Sapunov, I. V. Shtrom, N. V. Sibirev, V. V. Fedorov, E. V. Ubyivovk, M. Tchernycheva, G. E. Cirlin, and I. S. Mukhin, Beilstein J. Nanotechnol. 9, 146 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Mozharov
    • 1
    Email author
  • A. A. Vasiliev
    • 1
  • F. E. Komissarenko
    • 2
  • A. D. Bolshakov
    • 1
  • G. A. Sapunov
    • 1
  • V. V. Fedorov
    • 1
  • G. E. Cirlin
    • 1
    • 2
    • 3
  • I. S. Mukhin
    • 1
    • 2
  1. 1.St. Petersburg Academic University, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Institute for Analytical Instrumentation, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations