, Volume 52, Issue 14, pp 1813–1816 | Cite as

Terahertz Optoelectronics of Quantum Rings and Nanohelices

  • T. P. Collier
  • A. M. Alexeev
  • C. A. Downing
  • O. V. Kibis
  • M. E. PortnoiEmail author


We outline a range of proposals on using quantum rings and nanohelices for terahertz device implementations. We show that an Aharonov-Bohm quantum ring system and a double-gated quantum ring system both permit control over the polarization properties of the associated terahertz radiation. In addition, we review the superlattice properties of a mathematically similar system, that of a nanohelix in external electric fields, which reveals negative differential conductance.



This work was financially supported by the EU H2020 RISE project CoExAN (TPC and MEP), the EPSRC CDT in Metamaterials XM2 (TPC), the RFBR project 18-29-19007 (OVK), and by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program (MEP).


  1. 1.
    P. H. Siegel, IEEE Trans. Microwave Theory Technol. 50, 910 (2002).CrossRefGoogle Scholar
  2. 2.
    B. Ferguson and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Tonouchi, Nat. Photon. 1, 97 (2007).CrossRefGoogle Scholar
  4. 4.
    A. M. Alexeev and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).Google Scholar
  5. 5.
    A. M. Alexeev and M. E. Portnoi, Phys. Status Solidi C 9, 1309 (2012).CrossRefGoogle Scholar
  6. 6.
    A. M. Alexeev, I. A. Shelykh, and M. E. Portnoi, Phys. Rev. B 88, 085429 (2013).CrossRefGoogle Scholar
  7. 7.
    T. P. Collier, V. A. Saroka, and M. E. Portnoi, Phys. Rev. B 96, 235430 (2017).CrossRefGoogle Scholar
  8. 8.
    O. V. Kibis, S. V. Malevannyy, L. Huggett, D. G. W. Parfitt, and M. E. Portnoi, Electromagnetics 25, 425 (2005).CrossRefGoogle Scholar
  9. 9.
    O. V. Kibis, D. G. W. Parfitt, and M. E. Portnoi, Phys. Rev. B 71, 035411 (2005).CrossRefGoogle Scholar
  10. 10.
    C. A. Downing, M. G. Robinson, and M. E. Portnoi, Phys. Rev. B 94, 155306 (2016).CrossRefGoogle Scholar
  11. 11.
    Physics of Quantum Rings, Ed. by V. M. Fomin (Springer, Berlin, 2014).zbMATHGoogle Scholar
  12. 12.
    W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London, Sect. B 62, 8 (1949).Google Scholar
  13. 13.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 (2000).CrossRefGoogle Scholar
  15. 15.
    E. Ribeiro, A. O. Govorov, W. Carvalho, Jr., and G. Medeiros-Riberio, Phys. Rev. Lett. 92, 126402 (2004).CrossRefGoogle Scholar
  16. 16.
    Z. Ren and P.-X. Gao, Nanoscale 6, 9366 (2014).CrossRefGoogle Scholar
  17. 17.
    B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. P. Collier
    • 1
  • A. M. Alexeev
    • 1
  • C. A. Downing
    • 2
  • O. V. Kibis
    • 3
  • M. E. Portnoi
    • 1
    • 4
    Email author
  1. 1.School of Physics, University of Exeter, Stocker RoadExeterUnited Kingdom
  2. 2.Department of Theoretical Physics, Universidad Autonoma de MadridMadridSpain
  3. 3.Department of Applied and Theoretical Physics, Novosibirsk State Technical UniversityNovosibirskRussia
  4. 4.ITMO UniversitySt. PetersburgRussia

Personalised recommendations