Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1813–1816 | Cite as

Terahertz Optoelectronics of Quantum Rings and Nanohelices

  • T. P. Collier
  • A. M. Alexeev
  • C. A. Downing
  • O. V. Kibis
  • M. E. PortnoiEmail author
INFRARED MICROWAVE PHENOMENA IN NANOSTRUCTURES

Abstract

We outline a range of proposals on using quantum rings and nanohelices for terahertz device implementations. We show that an Aharonov-Bohm quantum ring system and a double-gated quantum ring system both permit control over the polarization properties of the associated terahertz radiation. In addition, we review the superlattice properties of a mathematically similar system, that of a nanohelix in external electric fields, which reveals negative differential conductance.

Notes

ACKNOWLEDGMENTS

This work was financially supported by the EU H2020 RISE project CoExAN (TPC and MEP), the EPSRC CDT in Metamaterials XM2 (TPC), the RFBR project 18-29-19007 (OVK), and by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program (MEP).

REFERENCES

  1. 1.
    P. H. Siegel, IEEE Trans. Microwave Theory Technol. 50, 910 (2002).CrossRefADSGoogle Scholar
  2. 2.
    B. Ferguson and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).CrossRefADSGoogle Scholar
  3. 3.
    M. Tonouchi, Nat. Photon. 1, 97 (2007).CrossRefADSGoogle Scholar
  4. 4.
    A. M. Alexeev and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).Google Scholar
  5. 5.
    A. M. Alexeev and M. E. Portnoi, Phys. Status Solidi C 9, 1309 (2012).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Alexeev, I. A. Shelykh, and M. E. Portnoi, Phys. Rev. B 88, 085429 (2013).CrossRefADSGoogle Scholar
  7. 7.
    T. P. Collier, V. A. Saroka, and M. E. Portnoi, Phys. Rev. B 96, 235430 (2017).CrossRefADSGoogle Scholar
  8. 8.
    O. V. Kibis, S. V. Malevannyy, L. Huggett, D. G. W. Parfitt, and M. E. Portnoi, Electromagnetics 25, 425 (2005).CrossRefGoogle Scholar
  9. 9.
    O. V. Kibis, D. G. W. Parfitt, and M. E. Portnoi, Phys. Rev. B 71, 035411 (2005).CrossRefADSGoogle Scholar
  10. 10.
    C. A. Downing, M. G. Robinson, and M. E. Portnoi, Phys. Rev. B 94, 155306 (2016).CrossRefADSGoogle Scholar
  11. 11.
    Physics of Quantum Rings, Ed. by V. M. Fomin (Springer, Berlin, 2014).zbMATHGoogle Scholar
  12. 12.
    W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London, Sect. B 62, 8 (1949).Google Scholar
  13. 13.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 (2000).CrossRefADSGoogle Scholar
  15. 15.
    E. Ribeiro, A. O. Govorov, W. Carvalho, Jr., and G. Medeiros-Riberio, Phys. Rev. Lett. 92, 126402 (2004).CrossRefADSGoogle Scholar
  16. 16.
    Z. Ren and P.-X. Gao, Nanoscale 6, 9366 (2014).CrossRefADSGoogle Scholar
  17. 17.
    B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. P. Collier
    • 1
  • A. M. Alexeev
    • 1
  • C. A. Downing
    • 2
  • O. V. Kibis
    • 3
  • M. E. Portnoi
    • 1
    • 4
    Email author
  1. 1.School of Physics, University of Exeter, Stocker RoadExeterUnited Kingdom
  2. 2.Department of Theoretical Physics, Universidad Autonoma de MadridMadridSpain
  3. 3.Department of Applied and Theoretical Physics, Novosibirsk State Technical UniversityNovosibirskRussia
  4. 4.ITMO UniversitySt. PetersburgRussia

Personalised recommendations