, Volume 52, Issue 13, pp 1677–1685 | Cite as

Interaction Rates of Group-III and Group-V Impurities with Intrinsic Point Defects in Irradiated Si and Ge

  • V. V. EmtsevEmail author
  • N. V. Abrosimov
  • V. V. Kozlovski
  • D. S. Poloskin
  • G. A. Oganesyan


A comparative study of interactions of shallow impurities with primary defects in oxygen- and carbon-lean moderately doped Si and Ge subjected to irradiation with 0.9 MeV electrons, 60Co gamma-rays, and 15 MeV protons at room temperature is presented and discussed. For the quantitative characterization of such interactions, changes in the total concentration of the original shallow group-V donor or group-III acceptor impurities in the irradiated materials are determined by Hall effect measurements over a wide temperature range. Losses of the shallow donor or acceptor states in the irradiated Si and Ge are indicative of their removal rates that can be used for estimation of production rates of primary defects interacting with the dopants. Some important factors affecting the interactions between primary defects and shallow impurities in Si and Ge are highlighted.



The authors would express their sincere thanks to Prof. G.D. Watkins for some critical comments while reading the manuscript. They are also thankful to Dr. V.V. Mikhnovich for many useful discussions and Dr. V.F. Makarenko for the help in radiation experiments.


  1. 1.
    G. D. Watkins, in Materials Science and Technology, Ed. by R. W. Cahn, P. Haasen, and E. J. Kramer (Wiley-VCH, Weinheim, Germany, 2005), Vols. 4–5, p. 107.Google Scholar
  2. 2.
    Gemanium-Based Technologies. From Materials to Devices, Ed. by C. Claeys and E. Simoen (Elsevier, Amsterdam etc., 2007).Google Scholar
  3. 3.
    M. Huhtinen, Nucl. Instrum. Methods Phys. Res., Sect. A 491, 194 (2002).Google Scholar
  4. 4.
    R. Radu, I. Pintilie, L. C. Nistor, E. Fretwurst, G. Lindstroem, and L. F. Makarenko, J. Appl. Phys. 117, 164503 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    F. Hönniger, PhD Thesis (Univ. Hamburg, Hamburg, 2007).Google Scholar
  6. 6.
    J. S. Blakemore, Semiconductor Statistics (Pergamon, Oxford, London, New York, Paris, 1962).zbMATHGoogle Scholar
  7. 7.
    K. Seeger, Semiconductor Physics (Springer, Wien, New York, 1973).CrossRefzbMATHGoogle Scholar
  8. 8.
    V. V. Emtsev, N. V. Abrosimov, V. V. Kozlovskii, and G. A. Oganesyan, Semiconductors 48, 1438 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. G. Abdusattarov, V. V. Emtsev, and T. V. Mashovets, Sov. Tech. Phys. Lett. 12, 606 (1986).Google Scholar
  10. 10.
    B. Pajot, Springer Ser. Solid State Sci. 158 (2010).Google Scholar
  11. 11.
    J. W. Mayer, L. Eriksson, and J. A. Davies, Ion Implantation in Semiconductors. Silicon and Germanium (Academic, New York, London, 1970).Google Scholar
  12. 12.
    P. L. F. Hemment and P. R. C. Stevens, J. Appl. Phys. 40, 4893 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    N. A. Vitovskii, D. Mustafakulov, and A. P. Chekmareva, Sov. Phys. Semicond. 11, 1024 (1977).Google Scholar
  14. 14.
    E. Holmström, A. Kuronen, and K. Nordlund, Phys. Rev. B, 78, 045202 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    J. W. Corbett and G. D. Watkins, Phys. Rev. A 138, 555 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    V. V Emtsev, P. M. Klinger, and T. V. Mashovets, Mater. Sci. Forum 83–87, 321 (1992).CrossRefGoogle Scholar
  17. 17.
    N. A. Vitovskii, A. G. Abdusattarov, V. V. Emtsev, T. V. Mashovets, and D. S. Poloskin, Sov. Phys. Semicond. 21, 1106 (1987).Google Scholar
  18. 18.
    V. V. Emtsev, T. V. Mashovets, V. V. Mikhnovich, and N. A. Vitovskii, Rad. Eff. Def. Solids 111–112, 99 (1989).CrossRefGoogle Scholar
  19. 19.
    J. Coutinho, V. J. B. Torres, A. Carvalho, R. Jones, S. Öberg, and P. R. Briddon, Mater. Sci. Semicond. Process. 9, 477 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Carvalho, R. Jones, C. Janke, J. P. Goss, P. R. Briddon, J. Coutinho, and S. Öberg, Phys. Rev. Lett. 99, 175502 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    A. Carvalho, R. Jones, J. Goss, C. Janke, J. Coutinho, S. Öberg, and P. R. Briddon, Phys. B (Amsterdam, Neth.) 401–402, 495 (2007).Google Scholar
  22. 22.
    V. V. Emtsev, T. V. Mashovets, and E. Kh. Nazaryan, Sov. Phys. Semicond. 15, 587 (1981).Google Scholar
  23. 23.
    V. V. Emtsev, V. V. Kozlovski, D. S. Poloskin, and G. A. Oganesyan, Semiconductors 51, 1571 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    E. D. Vasil’eva, V. V. Emtsev, and T. V. Mashovets, Sov. Phys. Semicond. 17, 21 (1983).Google Scholar
  25. 25.
    E. D. Vasil’eva, L. A. Goncharov, Yu. N. Daluda, V. V. Emtsev, and P. D. Kervalishvili, Sov. Phys. Semicond. 15, 727 (1981).Google Scholar
  26. 26.
    E. D. Vasil’eva, Yu. N. Daluda, V. V. Emtsev, and T. V. Mashovets, Sov. Phys. Semicond. 15, 221 (1981).Google Scholar
  27. 27.
    L. C. Kimerling, P. Blood, and W. M. Gibson, in Defects and Radiation Effects in Semiconductors, Ed. by J. H. Albany, IOP Conf. Ser.: Mater. Sci. Eng. 46, 273 (1979).Google Scholar
  28. 28.
    V. V. Emtsev, N. V. Abrosimov, V. V. Kozlovski, G. A. Oganesyan, and D. S. Poloskin, Semiconductors 50, 1291 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    V. V. Emtsev, G. A. Oganesyan, N. V. Abrosimov, and V. V. Kozlovski, Solid State Phenom. 205–206, 422 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Emtsev
    • 1
    Email author
  • N. V. Abrosimov
    • 2
  • V. V. Kozlovski
    • 3
  • D. S. Poloskin
    • 1
  • G. A. Oganesyan
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Leibniz Institute for Crystal GrowthBerlinGermany
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations