Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1704–1707 | Cite as

Diffusion Blurring of GaAs Quantum Wells Grown at Low Temperature

  • V. I. UshanovEmail author
  • V. V. ChaldyshevEmail author
  • V. V. Preobrazhenskii
  • M. A. Putyato
  • B. R. Semyagin
SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • 8 Downloads

Abstract

The processes of the diffusion blurring of a periodic system of GaAs quantum wells separated by AlGaAs barriers are studied by photoluminescence spectroscopy. The system is grown by molecular-beam epitaxy at a low temperature (200°C) and additionally doped with Sb and P isovalent impurities. Postgrowth annealing at the temperature 750°C for 30 min induces an increase in the energy corresponding to the photoluminescence peak of the e1–hh1 exciton state in quantum wells because of blurring of the epitaxial GaAs/AlGaAs interfaces due to enhanced Al–Ga interdiffusion in the cation sublattice. For the Al concentration profile defined by linear diffusion into quantum wells, the Schrödinger equation for electrons and holes is solved. It is found that the experimentally observed energy position of the photoluminescence peak corresponds to the Al–Ga interdiffusion length 3.4 nm and to the effective diffusion coefficient 6.3 × 10–17 cm2 s–1 at the temperature 750°C. This value is found to be close to the corresponding value for GaAs quantum wells grown at low temperatures without additional doping with Sb and P impurities. From the results obtained in the study, it is possible to conclude that enhanced As–Sb and As–P interdiffusion in the anion sublattice only slightly influences the processes of Al–Ga interdiffusion in the cation sublattice.

Notes

ACKNOWLEDGMENTS

The study was supported by the Presidium of the Russian Academy of Sciences, the program No. 7 “Topical Problems of Photonics; Probing of Inhomogeneous Media and Materials”, and by the Russian Foundation for Basic Research, project no. 17-02-01168.

REFERENCES

  1. 1.
    I. Lahiri, D. D. Nolte, M. R. Melloch, J. M. Woodall, and W. Walukiewicz, Appl. Phys. Lett. 69, 239 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    R. Guersen, I. Lahiri, M. Dinu, M. R. Melloch, and D. D. Nolte, Phys. Rev. B 60, 10926 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    I. Lahiri, D. D. Nolte, J. C. P. Chang, J. M. Woodall, and M. R. Melloch, Appl. Phys. Lett. 67, 1244 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Pastor, U. V. Prokhorova, P. Yu. Serdobintsev, V. V. Chaldyshev, and M. A. Yagovkina, Semiconductors 47, 1137 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    I. Lahiri, D. D. Nolte, E. S. Harmon, M. R. Melloch, and J. M. Woodall, Appl. Phys. Lett. 66, 2519 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    D. G. Deppe and N. Holonyak, J. Appl. Phys. 64, R93 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    N. A. Bert, V. V. Chaldyshev, Yu. G. Musikhin, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and P. Werner, Appl. Phys. Lett. 74, 1442 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Bert, Yu. G. Musikhin, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, A. A. Suvorova, V. V. Chaldyshev, and P. Werner, Semiconductors 32, 683 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Chaldyshev, N. A. Bert, Yu. G. Musikhin, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, P. Werner, and U. Gösele, Appl. Phys. Lett. 79, 1294 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    H. Bender, W. Coene, and A. F. D. Jong, Ultramicroscopy 21, 373 (1987).CrossRefGoogle Scholar
  12. 12.
    D. B. McWhan, R. M. Fleming, A. C. Gossard, W. Wiegmann, and R. A. Logan, J. Appl. Phys. 51, 357 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    D. A. Collins, R. M. Feenstra, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    J. Singh and K. K. Bajaj, Appl. Phys. Lett. 47, 594 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Chaldyshev, Mater. Sci. Eng. B 88, 195 (2002).CrossRefGoogle Scholar
  16. 16.
    T. Tan, U. Gösele, and S. Yu, Crit. Rev. Solid State Mater. Sci. 17, 47 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    M. Schultz, U. Egger, R. Scholz, O. Breitenstein, U. Gösele, and T. Y. Tan, J. Appl. Phys. 83, 5295 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    S. Adachi, J. Appl. Phys. 58, R1 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations