, Volume 52, Issue 13, pp 1686–1690 | Cite as

Intracenter Radiative Transitions at Tantalum Impurity Centers in Cadmium Telluride

  • V. V. UshakovEmail author
  • D. F. Aminev
  • V. S. Krivobok


Luminescence spectra of Ta impurity centers in CdTe are studied for the first time. It is found that, as the 3d (Ta) electron system of centers is considered instead of the 3d (V) system, a substantial change in the characteristics of impurity-related emission is observed. Electron transitions are identified in accordance with the Tanabe–Sugano diagrams of crystal-field theory. It is established that radiative transitions occur within isolated \({\text{Ta}}_{{{\text{Cd}}}}^{{3 + }}\) centers, between levels with different spins. Temperature broadening of the zero-phonon line of tantalum is induced by the interaction of d electrons of the center with TA phonons of the crystal lattice. However, in interpreting the data on the temperature shift of the line, it is essential to take into account the hybridization of local impurity states and band states. Temperature quenching of the luminescence signal occurs with activation energies of 60 and 160 meV. The radiative lifetime of centers in CdTe:Ta is 1.5 μs.



We thank V.A. Dravin for carrying out ion implantation.

The study was supported by the Russian Science Foundation, project no. 14-22-00273.


  1. 1.
    S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition Metal Ions in Crystals (Academic, New York, 1970).Google Scholar
  2. 2.
    L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quant. Electron. 32, 885 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    I. T. Sorokina, Opt. Mater. 26, 395 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Tables of Parameters of Spatial Distribution of Ion-Implanted Impurities (Belorus. Gos. Univ., Minsk, 1980) [in Russian].Google Scholar
  5. 5.
    V. N. Yakimkin, Extended Abstract of Cand. Sci. Dissertation (Moscow State Univ., Moscow, 1988).Google Scholar
  6. 6.
    Physics and Chemistry of AII-BVI Compounds, Ed. by S. A. Medvedev, M. Aven, and J. S. Prener (Amsterdam, North-Holland, 1967; Mir, Moscow, 1970).Google Scholar
  7. 7.
    Le Manh Hoang and J. M. Baranowski, Phys. Status Solidi B 84, 361 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, Phys. Rev. A 133, 1029 (1964).ADSCrossRefGoogle Scholar
  9. 9.
    J. M. Rowe, R. M. Nicklow, D. L. Price, and K. Zanio, Phys. Rev. B 10, 671 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    J. P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, and A. Lusson, J. Appl. Phys. 67, 6454 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Ushakov, A. A. Gippius, and V. A. Dravin, Sov. Phys. Semicond. 17, 743 (1983).Google Scholar
  12. 12.
    J. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971).Google Scholar
  13. 13.
    H. Zimmermann, R. Boyn, and K. Piel, J. Phys.: Condens. Matter 4, 859 (1992).ADSGoogle Scholar
  14. 14.
    D. Bimberg, M. Sondergeld, and E. Grobe, Phys. Rev. B 4, 3451 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Ushakov
    • 1
    Email author
  • D. F. Aminev
    • 1
  • V. S. Krivobok
    • 1
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations