, Volume 52, Issue 13, pp 1758–1762 | Cite as

Radiation-Induced Damage of Silicon-Carbide Diodes by High-Energy Particles

  • A. M. Strel’chukEmail author
  • V. V. Kozlovski
  • A. A. Lebedev


The radiation hardness of three types of commercial Schottky rectifier diodes based on silicon carbide (4H-SiC, base layer doping level (3–7) × 1015 cm–3) under electron (0.9 or 3.5 MeV electrons) and proton irradiation (15 MeV protons) is studied. The forward and reverse current–voltage characteristics of the diodes are monitored. In the initial state, the diodes have a breakdown voltage of 1–2 kV and an almost ideal forward current–voltage characteristic. It is found that the series resistance of the diodes is the most sensitive to radiation and governs the radiation hardness. This resistance grows by nearly 10 orders of magnitude and reaches a value of 109 Ω at high doses. The threshold doses of electron irradiation fall within the range Dth ≈ (0.5–2) × 1016 cm–2 and depend on the electron energy and doping level of the base layer, and those of proton irradiation, Dth ≈ 5 × 1013 cm–2.



The study was supported by the Russian Science Foundation (project no. 16-12-10106 “Radiation hardness of silicon carbide and devices based on this material for extreme electronics”).


  1. 1.
    O'Connor and J. R. Smiltens, in Proceedings of the Conference on Silicon Carbide (Pergamon, Oxford, 1960).Google Scholar
  2. 2.
    E. V. Kalinina, Semiconductors 41, 745 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Lebedev, K. S. Davydovskaya, A. M. Strelchuk, and V. V. Kozlovski, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 924 (2017).CrossRefGoogle Scholar
  4. 4.
    C. Claes and E. Simoen, Radiation effects in Advanced Semiconductor Materials and Devices (Springer, Berlin, Heidelberg, 2002).CrossRefGoogle Scholar
  5. 5.
    E. Omotoso, W. E. Meyer, F. D. Auret, A. T. Paradzah, M. Diale, S. M. M. Coelho, and P. J. Janse van Rensburg, Mater. Sci. Semicond. Process. 39, 112 (2015).CrossRefGoogle Scholar
  6. 6.
    A. M. Ivanov, N. B. Strokan, V. V. Kozlovski, and A. A. Lebedev, Semiconductors 42, 363 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    R. K. Sharma, P. Hazdra, and S. Popelka, Int. J. Microelectron. Comput. Sci. 6, 59 (2015).Google Scholar
  8. 8.
    P. A. Ivanov, I. V. Grekhov, A. S. Potapov, N. D. Il’inskaya, T. P. Samsonova, and O. I. Kon’kov, Semiconductors 43, 1209 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. M. Strel’chuk, V. V. Zelenin, A. N. Kuznetsov, J. Tringe, A. V. Davydov, and A. A. Lebedev, Mater. Sci. Forum 858, 749 (2016).CrossRefGoogle Scholar
  10. 10.
    A. M. Strel’chuk, A. A. Lebedev, V. V. Kozlovski, N. S. Savkina, D. V. Davydov, V. V. Solov’ev, and M. G. Rastegaeva, Nucl. Instrum. Methods Phys. Res. B 147, 74 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    A. M. Strel’chuk, V. T. Gromov, V. V. Zelenin, A. N. Kuznetsov, A. A. Lebedev, N. G. Orlov, N. S. Savkina, and V. P. Shukailo, Mater. Sci. Forum 897, 459 (2017).CrossRefGoogle Scholar
  12. 12.
    E. V. Kalinina, G. F. Kholuyanov, D. V. Davydov, A. M. Strel’chuk, A. Hallen, A. O. Konstantinov, V. V. Luchinin. and A. Yu. Nikiforov, Semiconductors 37, 1229 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Strel’chuk
    • 1
    Email author
  • V. V. Kozlovski
    • 2
  • A. A. Lebedev
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations