Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1653–1661 | Cite as

Effect of a por-Si Buffer Layer on the Structure and Morphology of Epitaxial InxGa1 – xN/Si(111) Heterostructures

  • P. V. SeredinEmail author
  • D. L. Goloshchapov
  • D. S. Zolotukhin
  • M. A. Kondrashin
  • A. S. Lenshin
  • Yu. Yu. Khudyakov
  • A. M. Mizerov
  • I. N. Arsentyev
  • A. N. Beltiukov
  • Harald Leiste
  • Monika Rinke
NONELECTRONIC PROPERTIES OF SEMICONDUCTORS (ATOMIC STRUCTURE, DIFFUSION)
  • 12 Downloads

Abstract

Integrated heterostructures exhibiting nanocolumnar morphology of the InxGa1 – xN/Si(111) film are grown on a single-crystal silicon substrate (c-Si(111)) and a substrate with a nanoporous buffer sublayer (por-Si) by molecular-beam epitaxy with the plasma activation of nitrogen. Using a complex of structural and microscopic methods of analysis, it is shown that the growth of InxGa1 – xN nanocolumns on a nanoporous buffer layer offers a number of advantages over growth on c-Si. The por-Si substrate predetermines the preferential orientation of the growth of InxGa1 – xN nanocolumns closer to the Si(111) orientation direction and makes it possible to produce InxGa1 – xN nanocolumns with a higher degree of crystallographic uniformity and with a nanocolumn lateral size of ~40 nm unified over the entire surface. The growth of InxGa1 – xN nanocolumns on a por-Si layer yields a decrease in the strain components εxx and εzz and in the density of edge and screw dislocations compared to the corresponding parameters for InxGa1 – xN nanocolumns grown on c-Si. The InxGa1 – xN nanocolumnar layer fabricated on por-Si exhibits a 20% higher charge-carrier concentration compared to the layer grown on c-Si as well as a higher intensity of the photoluminescence quantum yield (+25%).

Notes

ACKNOWLEDGMENTS

The study was supported by the President of the Russian Federation, grant no. MD-188.2017.2.

The part of the study concerned with growth experiments was supported by the Ministry of Education and Science of the Russian Federation, government order no. 16.9789.2017/BCh. The part of the study concerned with controlling the morphology and composition of bulk and porous substrates was supported by Ioffe Institute. The part of the study concerned with diagnostics of the integrated structures was supported by the Ministry of Education and Science of the Russian Federation, government order to institutes of higher education in the field of research activities for 2017–2019, project no. 11.4718.2017/8.9.

We thank the Karlsruhe Nano Micro Facility (NKMF, www.kit.edu/knmf), Forschungszentrum Karlsruhe, for providing access to the equipment at their laboratories.

REFERENCES

  1. 1.
    C. Li, Z. Ji, J. Li, M. Xu, H. Xiao, and X. Xu, Sci. Rep. 7, 15301 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    S. Albert, A. Bengoechea-Encabo, P. Lefebvre, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, and A. Trampert, Appl. Phys. Lett. 99, 131108 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    S. Keating, M. G. Urquhart, D. V. P. McLaughlin, and J. M. Pearce, Cryst. Growth Des. 11, 565 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, in Proceedings of the Integrated Optoelectronic Devices, San Jose, CA, 2006, Proc. SPIE 6129, 612905 (2006).CrossRefGoogle Scholar
  5. 5.
    W. Zhang, X. Zhang, Y. Wang, and F. Hu, Opt. Mater. 72, 422 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    T. Kano, J. Yoshida, R. Miyagawa, Y. Mizuno, T. Oto, and K. Kishino, Electron. Lett. 51, 2125 (2015).CrossRefGoogle Scholar
  7. 7.
    K. Vanhollebeke, I. Moerman, P. van Daele, and P. Demeester, Prog. Cryst. Growth Charact. Matters 41, 1 (2000).CrossRefGoogle Scholar
  8. 8.
    S. Shetty and S. M. Shivaprasad, in Proceedings of the IEEE 2nd International Conference on Emerging Electronics ICEE, Bangalore, India, 2014, p. 1.Google Scholar
  9. 9.
    C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, and P. Yang, ACS Nano 5, 3970 (2011).CrossRefGoogle Scholar
  10. 10.
    P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, A. V. Zhabotinskiy, and D. N. Nikolaev, Phys. E (Amsterdam, Neth.) 97, 218 (2018).Google Scholar
  11. 11.
    P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, D. N. Nikolaev, and A. V. Zhabotinskiy, Phys. B: Condens. Matter 530, 30 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    P. V. Seredin, A. S. Lenshin, V. M. Kashkarov, A. N. Lukin, I. N. Arsentiev, A. D. Bondarev, and I. S. Tarasov, Mater. Sci. Semicond. Proc. 39, 551 (2015).CrossRefGoogle Scholar
  13. 13.
    A. S. Lenshin, P. V. Seredin, B. L. Agapov, D. A. Minakov, and V. M. Kashkarov, Mater. Sci. Semicond. Proc. 30, 25 (2015).CrossRefGoogle Scholar
  14. 14.
    A. S. Len’shin, V. M. Kashkarov, P. V. Seredin, B. L. Agapov, D. A. Minakov, V. N. Tsipenyuk, and E. P. Domashevskaya, Tech. Phys. 59, 224 (2014).CrossRefGoogle Scholar
  15. 15.
    V. M. Kashkarov, A. S. Len’shin, P. V. Seredin, B. L. Agapov, and V. N. Tsipenuk, J. Surf. Investig.: X-ray Synchrotr. Neutron Tech. 6, 776 (2012).CrossRefGoogle Scholar
  16. 16.
    Z. L. Fang, Q. F. Li, X. Y. Shen, H. Xiong, J. F. Cai, J. Y. Kang, and W. Z. Shen, J. Appl. Phys. 115, 043514 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, A. S. Lenshin, M. S. Smirnov, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 46, 719 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. V. Seredin, V. E. Ternovaya, A. V. Glotov, A. S. Len’shin, I. N. Arsent’ev, D. A. Vinokurov, I. S. Tarasov, H. Leiste, and T. Prutskij, Phys. Solid State 55, 2161 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Seredin, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and T. Prutskij, Semiconductors 47, 1 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    P. V. Seredin, A. S. Lenshin, A. V. Glotov, I. N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, T. Prutskij, H. Leiste, and M. Rinke, Semiconductors 48, 1094 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    P. V. Seredin, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and A. L. Stankevich, Semiconductors 47, 7 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    S. Adachi, Properties of Semiconductor Alloys: Group-IV, IIIV and II–VI Semiconductors, Ed. by P. Capper, S. Kasap, and A. Willoughby (Wiley, Chichester, 2009).CrossRefGoogle Scholar
  23. 23.
    M. A. Moram, Z. H. Barber, and C. J. Humphreys, J. Appl. Phys. 102, 023505 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    A. F. Wright, J. Appl. Phys. 82, 2833 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 44, 1106 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    I. Booker, L. Rahimzadeh Khoshroo, J. F. Woitok, V. Kaganer, C. Mauder, H. Behmenburg, J. Gruis, M. Heuken, H. Kalisch, and R. H. Jansen, Phys. Status Solidi C 7, 1787 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, Philos. Mag. A 77, 1013 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    S. K. Hong, T. Yao, B. J. Kim, S. Y. Yoon, and T. I. Kim, Appl. Phys. Lett. 77, 82 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Seredin
    • 1
    Email author
  • D. L. Goloshchapov
    • 1
  • D. S. Zolotukhin
    • 1
  • M. A. Kondrashin
    • 1
  • A. S. Lenshin
    • 1
  • Yu. Yu. Khudyakov
    • 1
  • A. M. Mizerov
    • 2
  • I. N. Arsentyev
    • 3
  • A. N. Beltiukov
    • 4
  • Harald Leiste
    • 5
  • Monika Rinke
    • 5
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.St. Petersburg National Research Academic University, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia
  4. 4.Physical Technical Institute, Ural Branch, Russian Academy of SciencesIzhevskRussia
  5. 5.Karlsruhe Nano Micro FacilityEggenstein-LeopoldshafenGermany

Personalised recommendations