, Volume 52, Issue 13, pp 1763–1769 | Cite as

Determination of the Region of Thermal Stability of the Size and Phase Composition of Silver-Sulfide Semiconductor Nanoparticles

  • S. I. Sadovnikov
  • E. G. Vovkotrub


The region of thermal stability of the size and phase composition of silver sulfide (Ag2S) nanoparticles is determined. Nanopowders consisting of Ag2S nanoparticles 475–50 nm in sizes are produced by chemical deposition from aqueous solutions. To analyze the thermal stability of Ag2S nanoparticles, nanocrystalline powders are annealed upon heating from room temperature to 453 K. Annealing at temperatures of up to 453 K does not induce the growth of nanoparticles, nor any change in their phase composition, which allows the conclusion that this temperature range is the range of thermal stability of the nanostate of silver sulfide.



The study was supported by the Russian Science Foundation, project no. 14-23-00025, at the Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences. The study was carried out with the use of equipment of the Multiple-Access Center “Composition of Materials”, Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.


  1. 1.
    W. Kahle and H. Berger, Phys. Status Solidi A 2, 717 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    S. I. Sadovnikov, N. S. Kozhevnikova, and A. A. Rempel’, Inorg. Mater. 47, 837 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Tang, Yu. Wang, H. Ye, C. Zhou, C. Yang, X. Li, H. Peng, F. Zhang, Y. Hou, and F. Teng, Nanotechnology 24, 355602 (2013).CrossRefGoogle Scholar
  4. 4.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).CrossRefGoogle Scholar
  5. 5.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature (London, U.K.) 433, 47 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 18, 485202 (2007).CrossRefGoogle Scholar
  8. 8.
    D. Wang, L. Liu, Y. Kim, X. Huang, D. Pantel, D. Hesse, and M. Alexe, Appl. Phys. Lett. 98, 243109 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, J. Phys. Chem. C 118, 4918 (2014).CrossRefGoogle Scholar
  10. 10.
    S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).CrossRefGoogle Scholar
  11. 11.
    S. I. Sadovnikov, Yu. V. Kuznetsova, and A.  A. Rempel, Nanostr. Nano-Object. 7, 81 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Jawhari, Analysis 28, 15 (2000).Google Scholar
  13. 13.
    V. N. Strekalovskii, E. G. Vovkotrub, and A. B. Salyulev, Analit. Kontr. 4, 334 (2000).Google Scholar
  14. 14.
    X'Pert Plus, Version 1.0, Program for Crystallography and Rietveld Analysis Philips Analytical B.V. (Koninklijke Philips Electronics and N.V., 1999).Google Scholar
  15. 15.
    A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Sci., Cambridge, 2004).Google Scholar
  16. 16.
    I. Martina, R. Wiesinger, D. Jembrih-Simbürger, and M. Schreiner, E-Preserv. Sci. (Morana RTD) 9, 1 (2012).Google Scholar
  17. 17.
    J. I. Lee, S. M. Howard, J. J. Kellar, K. N. Han, and W. Cross, Metall. Mater. Trans. B 32, 805 (2001).CrossRefGoogle Scholar
  18. 18.
    A. N. Belov, O. V. Pyatilova, and M. I. Vorobiev, Adv. Nanopart. 3, 1 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Osada, K. Terabe, C. Liang, and T. Hasegawa, in Proceedings of the 214th ECS Meeting MA 2008-2, Honolulu, 2008, Abstract 1406.Google Scholar
  20. 20.
    Y. Delgado-Beleño, M. Cortez-Valadez, C. E. Martinez-Nuñez, R. Britto Hurtado, A. B. Alvarez Ramón, O. Rocha-Rocha, H. Arizpe-Chávez, A. Perez-Rodríguez, and M. Flores-Acosta, Chem. Phys. 463, 106 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Hashmi, P. Sana, M. M. Malik, A. H. Siddiqui, and M. S. Qureshi, Nano Hybrides 1, 23 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solid-State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations