, Volume 52, Issue 13, pp 1782–1789 | Cite as

New Manufacturing Approaches to Texture Formation and Thermal Expansion Matching in the Design of Highly Efficient Silicon Solar Photoconverters

  • S. E. NikitinEmail author
  • A. V. Bobyl
  • N. R. Avezova
  • E. I. Terukov


The causes of the failure of highly efficient silicon solar photoconverters are considered. About 30% of failures take place because of crack formation in silicon wafers and electrodes. Mechanical stresses leading to crack formation are associated with the pyramidal texture geometry and difference in the thermal expansion of the construction materials. A new procedure for silicon texturing is described, where SiOx precipitates perform the function of texture nuclei, which makes it possible to obtain a surface consisting of submicron concave spheroids, which sharply decreases reflection in the wavelength region of 330–550 nm. A new method of matching the thermal expansion of photoconverter design elements with the use of matching layers of iron–nickel alloys is proposed, which provides a substantial decrease in the failure probability by the crack-formation mechanism in silicon wafers and the delamination of electrodes.



This study was supported by the Russian Foundation for Basic Research, project no. 18-58-41005. Electron microscopy images were partially recorded using equipment of the JUC “Materials Science and Diagnostics in Advanced Technologies”.


  1. 1.
    M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt. 4, 96 (2014).CrossRefGoogle Scholar
  2. 2.
    J. Kegel, H. Angermann, U. Stürzebecher, E. Conrad, M. Mews, L. Korte, and B. Stegemann, Appl. Surf. Sci. 301, 56 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    Springer Handbook of Electronic and Photonic Materials, Ed. by S. Kasap and P. Capper (Springer Int., Switzerland, 2017).Google Scholar
  4. 4.
    A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 668 (2017).CrossRefGoogle Scholar
  5. 5.
    ITRPV, 8th ed. (September, 2017). http://www.semi. org/sites/ Revision1_140324.pdf.Google Scholar
  6. 6.
    M. Köntges, S. Kurtz, U. Jahn, K. A. Berger, K. Kato, H. Liu, T. Friesen, and M. van Iseghem, Report IEA-PVPS T13-01:2014 (2014).Google Scholar
  7. 7.
    L. Forbes, Solar Energy 86, 319 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    M. Edwards, S. Bowden, U. Das, and M. Burrows, Sol. Energy Mater. Sol. Cells 92, 1373 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Moreno, D. Murias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P. Rosales, P. Roca i Cabarrocas, and M. Escobar, Solar Energy 101, 182 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. Buchler, A. Beinert, S. Kluska, V. Haueisen, P. Romer, F. D. Heinz, M. Glatthaar, and M. Schubert, Energy Proc. 124, 18 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Rion, Y. Leterrier, J.-A. E. Menson, and J.-M. Blairon, Composites, Pt A 40, 1167 (2009).Google Scholar
  12. 12.
    M. T. Zarmai, N. N. Ekere, C. F. Oduoza, and E. H. Amalu, Appl. Energy 154, 173 (2015).CrossRefGoogle Scholar
  13. 13.
    T. Aoyama, M. Aoki, I. Sumita, Y. Yoshino1, Y. Ohshita, and A. Ogura, Jpn. J. Appl. Phys. 56, 102302 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    arXiv:1801.04245v1 [] (2018).Google Scholar
  15. 15.
    H. Angermann, A. Laades, U. Stürzebecher, E. Conrad, C. Klimm, T. F. Schulze, K. Jacob, A. Lawerenz, and L. Korte, Solid State Phenom. 187, 349 (2012).CrossRefGoogle Scholar
  16. 16.
    Y. Han, X. Yu, D. Wang, and D. Yang, J. Nanomater. 716012, 5 (2013).Google Scholar
  17. 17.
    A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, Sol. Energy Mater. Sol. Cells 93, 1276 (2009).CrossRefGoogle Scholar
  18. 18.
    V. N. Verbitskii, I. E. Panaiotti, S. E. Nikitin, A. V. Bobyl’, G. G. Shelopin, D. A. Andronikov, A. S. Abramov, A. V. Sachenko, and E. I. Terukov, Tech. Phys. Lett. 43, 779 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    A. Borghesi, B. Pivac, A. Sassella, and A. Stella, J. Appl. Phys. 77, 4169 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, Sol. Energy Mater. Sol. Cells 120, 402 (2014).CrossRefGoogle Scholar
  21. 21.
    S. E. Nikitin, E. E. Terukova, A. V. Nashchekin, and A. V. Bobyl’, RF Patent No. 2600076.Google Scholar
  22. 22.
    S. E. Nikitin, E. E. Terukova, A. V. Nashchekin, A. V. Bobyl, I. N. Trapeznikova, and V. N. Verbitskiy, Semiconductors 51, 104 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    A. I. Kurnosov and V. V. Yudin, Production Technology of Semiconductor Devices and Integrated Circuits (Vyssh. Shkola, Moscow, 1986), Chap. 7, p. 118 [in Russian].Google Scholar
  24. 24.
    A. Kazor, R. Gwilliam, and I. W. Boyd, Appl. Phys. Lett. 65, 412 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    Zh. Cui, J. M. Madsen, and Ch. G. Takoudis, J. Appl. Phys. 87, 8181 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    J. R. Wilson and M. E. Levis, Nature (London, U.K.) 206, 1350 (1965).ADSCrossRefGoogle Scholar
  27. 27.
    C. E. Nikitin, A. V. Bobyl’, G. A. Ivanov, and E. I. Terukov, RF Patent No. 172396.Google Scholar
  28. 28.
    V. B. Arzamasov, A. N. Volchkov, et al., Material Science and Technology of Construction Materials (Akademiya, Moscow, 2007) [in Russian].Google Scholar
  29. 29.
    A. Parfenov, Tekhnol. Elektron. Prom-sti, No. 2 (2008). Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. E. Nikitin
    • 1
  • A. V. Bobyl
    • 1
    • 2
  • N. R. Avezova
    • 3
  • E. I. Terukov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg State Electrotechnical University “LETI”St. PetersburgRussia
  3. 3.Physicotechnical Institute, Research-and-Production Association “Physics–Sun”, Uzbekistan Academy of SciencesTashkentUzbekistan

Personalised recommendations