Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1721–1731 | Cite as

Influence of Hydrogen Peroxide on the Photoanodization of n-Si in the Breakdown Mode

  • G. V. Li
  • E. V. AstrovaEmail author
  • A. I. Lihachev
MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • 5 Downloads

Abstract

The electrochemical etching of n-Si (100) in an electrolyte composed of 4% HF solution in 30% hydrogen peroxide is experimentally studied at a voltage exceeding the breakdown voltage. The effect of the illuminance of the wafer back side on the porous-structure morphology and such parameters as porosity, effective valence, and pore growth rate are examined. The data obtained are compared with those for structures subjected to photoanodization in an aqueous electrolyte at the same HF concentration. It is found that the presence of hydrogen peroxide strongly changes the morphology of macropores, makes their diameter smaller, and raises by a factor of ~2 the rate of growth deeper into the substrate. In the presence of H2O2, there appear inclined secondary pores oriented at an angle of 15°–35° to the main channel axis and a number of breakthrough mesopores propagating in the 〈100〉 directions in the plane parallel to the sample surface. The effective valence of the electrochemical dissolution of silicon in the HF:H2O2 electrolyte at a low illumination level is close to unity and grows with increasing light intensity, always being smaller than 2.

Notes

ACKNOWLEDGMENTS

We are grateful to D.N. Goryachev, O.M. Sreseli, and V.P. Ulin for reading the manuscript and helpful discussions. The electron-microscopic analysis was made by A.I. Likhachev on equipment of the Federal Collective Use Center “Materials science and diagnostics in advanced technologies,” supported by the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEFI62117X0018).

REFERENCES

  1. 1.
    L. Canham, Handbook of Porous Silicon (Springer Int., Switzerland, 2014), Part V, p. 731.Google Scholar
  2. 2.
    M. Bassu, S. Surdo, L. M. Strambini, and G. Barillaro, Adv. Funct. Mater. 22, 1222 (2012).CrossRefGoogle Scholar
  3. 3.
    V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, 2002).CrossRefGoogle Scholar
  4. 4.
    T. Trifonov A. Rodríguez, L. F. Marsal, J. Pallares, and R. Alcubilla, Sens. Actuators, A 141, 662 (2008).Google Scholar
  5. 5.
    X. Q. Bao, J. W. Jiao, Y. L. Wang, Y. Zhang, D. H. Ge, KyoungWon Na, and H. Choi, Electrochem. Commun. 9, 1491 (2007).CrossRefGoogle Scholar
  6. 6.
    C. Cozzi, G. Polito, L. M. Strambini, and G. Barillaro, Electrochim. Acta 187, 552 (2016).CrossRefGoogle Scholar
  7. 7.
    Z. Huang, N. Geyer, P. Werner, J. Boor, and U. Gösele, Adv. Mater. 23, 285 (2011).CrossRefGoogle Scholar
  8. 8.
    D. N. Goryachev, L. V. Belyakov, and O. M. Sreseli, Semiconductors 37, 477 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    M. Christophersen, J. Cartensen, and H. Föll, Phys. Status Solidi A 182, 45 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    Y. H. Ogata, A. Koyama, F. A. Harraz, M. S. Salem, and T. Sakka, Electrochemistry 75, 270 (2007).CrossRefGoogle Scholar
  11. 11.
    X. Q. Bao, J. W. Jiao, Y. L. Wang, K. W. Na, and H. Choi, J. Electrochem. Soc. 154, D175 (2007).CrossRefGoogle Scholar
  12. 12.
    X. Q. Bao, J. W. Jiao, J. Zhou, and Y. L. Wang, Electrochim. Acta 52, 6728 (2007).CrossRefGoogle Scholar
  13. 13.
    X. Q. Bao, J. W. Jiao, Y. L. Wang, K. W. Na, and H. Choi, Phys. Status Solidi A 204, 2287 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    F. A. Harraz, S. M. El-Sheikh, T. Sakka, and Y. H. Ogata, Electrochim. Acta 53, 6444 (2008).CrossRefGoogle Scholar
  15. 15.
    D. H. Ge, J. W. Jiao, S. Zhang, and Y. L. Wang, Electrochem. Commun. 12, 603 (2010).CrossRefGoogle Scholar
  16. 16.
    C. Cozzi, G. Polito, K. W. Kolasinski, and G. Barillaro, Adv. Funct. Mater. 27, 1604310 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Cozzi, G. Polito, K. W. Kolasinski, and G. Barillaro, ECS Trans. 77, 199 (2017).CrossRefGoogle Scholar
  18. 18.
    E. V. Astrova, N. E. Preobrazhenskiy, G. V. Li, and S. I. Pavlov, Semiconductors 52, 394 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    C. Jager, B. Finkenberger, W. Jager, M. Shristophersen, J. Carstensen, and H. Foll, Mater. Sci. Eng. B 69–70, 199 (2000).CrossRefGoogle Scholar
  20. 20.
    H. Foll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R 39 (4), 93 (2002).CrossRefGoogle Scholar
  21. 21.
    S. Lolkes, M. Christophersen, S. Langa, J. Carstensen, and H. Foll, Mater. Sci. Eng. B 101, 159 (2003).CrossRefGoogle Scholar
  22. 22.
    H. Gerischer, P. Allongue, and V. C. Kieling, Ber. Bunsenges. Phys. Chem. 97, 753 (1993).CrossRefGoogle Scholar
  23. 23.
    K. W. Kolasinski, Surf. Sci. 603, 1904 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    M. Christophersen, J. Cartensen, and H. Föll, Phys. Status Solidi A 182, 45 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations