Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1775–1781 | Cite as

Precision Chemical Etching of GaP(NAs) Epitaxial Layers for the Formation of Monolithic Optoelectronic Devices

  • D. A. KudryashovEmail author
  • A. S. Gudovskikh
  • A. I. Baranov
FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • 7 Downloads

Abstract

The results of studying the applicability of various etchants for the precision wet etching of structures of monolithic optoelectronic devices containing GaPNAs layers are presented. It is shown that an etchant based on potassium iodide and hydrochloric acid is best suited for this purpose. The presence of nitrogen (up to 4%) and arsenic in the semiconductor composition does not greatly affect the etchant action but requires additional calibration experiments to refine the etching rate in each particular case. Examples of the practical application of precision etching to measure the characteristics of GaPNAs-based solar cells are presented.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 17-19-01482.

REFERENCES

  1. 1.
    J. F. Geisz, D. J. Friedman, and S. Kurtz, in Proceedings of the 29th IEEE Photovoltaics Specialists Conference, New Orleans, Louisiana, 2002, p. 864-7.Google Scholar
  2. 2.
    S. Essig, M. A. Steiner, Ch. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, Ch. Ballif, P. Stradins, and D. L. Young, IEEE J. Photovolt. 6, 1012 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Ilahi, S. Almosni, F. Chouchane, M. Perrin, K. Zelazna, N. Yacoubi, R. Kudrawiec, P. R\({\breve{a}}\)le, L. Lombez, J.-F. Guillemoles, O. Durand, and C. Cornet, Sol. Energy Mater. Sol. Cells 141, 291 (2015).CrossRefGoogle Scholar
  4. 4.
    W. Shan, W. Walukiewicz, K. M. Yu, J. Wu, J. W. Ager, E. E. Haller, H. P. Xin, and C. W. Tu, Appl. Phys. Lett. 76, 3251 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Buyanowa, G. Pozina, J. P. Bergman, W. M. Chen, H. P. Xin, and C. W. Tu, Appl. Phys. Lett. 52, 81 (2002).Google Scholar
  6. 6.
    D. A. Kudryashov, A. S. Gudovskikh, E. V. Nikitina, and A. Yu. Egorov, Semiconductors 48, 381 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Babichev, V. Yu. Butko, M. S. Sobolev, E. V. Ni-kitina, N. V. Kryzhanovskaya, and A. Yu. Egorov, Semiconductors 46, 796 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Y. Moon, H. Yonezu, Y. Furukawa, Y. Morisaki, S. Yamada, and A. Wakahara, Phys. Status Solidi, A 204, 2082 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Baranov, A. S. Gudovskikh, E. V. Nikitina, and A. Yu. Egorov, Tech. Phys. Lett. 39, 1117 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    R. Memming and G. Schwandt, Electrochim. Acta 13, 1299 (1968).CrossRefGoogle Scholar
  11. 11.
    B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, Ann. Rev. Phys. Chem. 63, 541 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    CRC Handbook of Chemistry and Physics, 84th ed., Ed. by D. R. Lide (CRC, Boca Raton, 2003).Google Scholar
  13. 13.
    J. Monhemius, Mineral Process. Extract. Metall. Rev. 8, 35 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Kudryashov
    • 1
    Email author
  • A. S. Gudovskikh
    • 1
    • 2
  • A. I. Baranov
    • 1
  1. 1.St. Petersburg National Research Academic University, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations