Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1696–1703 | Cite as

Redistribution of Erbium and Oxygen Recoil Atoms and the Structure of Silicon Thin Surface Layers Formed by High-Dose Argon Implantation through Er and SiO2 Surface Films

  • K. V. FeklistovEmail author
  • A. G. Cherkov
  • V. P. Popov
  • L. I. Fedina
SURFACES, INTERFACES, AND THIN FILMS
  • 14 Downloads

Abstract

Using analytical high-resolution electron microscopy, the Si structure and the redistribution of Er and O recoil atoms embedded in thin (~10 nm) surface layers by Ar+ implantation with an energy of 250–290 keV and a dose of 1 × 1016 cm–2 through Er and SiO2 films, respectively, and subsequent annealing are studied. It is established that Si recrystallization fails at a distance of ~20 nm from the surface, where the erbium concentration of 5 × 1019 cm–3 critical for failure is achieved at T = 950°C. It disproves the generally accepted model of Er-atom transfer by the recrystallization front into SiO2 on the surface. Instead, it is shown that the redistribution of O recoil atoms to the initial oxide during annealing for immobile Er atoms provides the formation of surface-inhomogeneous erbium phases in such a way that the oxygen-enriched Er–Si–O phase turns out to be concentrated in the oxide, while the depleted Er–Si phase remains in Si. It explains the partial loss of implanted Er after removal of the oxide together with the Er–Si–O phase. It was shown that the formation of a high density of microtwins (locally up to 1013 cm–2) is associated with the formation of Ar bubbles and clusters, which is atypical for (100)–Si recrystallization.

Notes

ACKNOWLEDGMENTS

We thank the Novosibirsk State University for TEM measurements in the framework of the state program “Provision of Scientific Research”.

The work was supported by the Program of Basic Research, Russian Academy of Sciences, no. 8.1.5. The defects in the structure were analyzed with the support of the Russian Science Foundation, project no. 14-22-00143.

REFERENCES

  1. 1.
    H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, Opt. Express 13, 9460 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, IEEE Phot. Techn. Lett. 18, 1143 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    N. A. Sobolev, Semiconductors 29, 595 (1995).ADSGoogle Scholar
  5. 5.
    A. Polman, J. Appl. Phys. 82, 1 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    S. Coffa, G. Franzògo and F. Priolo, J. Appl. Phys. 81, 2784 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature (London, U.K.) 412, 805 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    A. M. Emel’yanov and N. A. Sobolev, Semiconductors 42, 329 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    N. A. Sobolev, Mater. Sci. Forum 590, 79 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Coffa, F. Priolo, G. Franzo, V. Bellani, A. Carnera, and C. Spinella, Phys. Rev. B 48, 11782 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    O. V. Aleksandrov, A. O. Zakhar’in, N. A. Sobolev, and Yu. A. Nikolaev, Semiconductors 36, 358 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    A. Polman, G. N. van den Hoven, J. S. Custer, J. H. Shin, R. Serna, and P. F. A. Alkemade, J. Appl. Phys. 77, 1256 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    O. B. Gusev, M. S. Bresler, P. E. Pak, and I. N. Yassievich, Phys. Rev. B 64, 075302 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    K. E. Kudryavtsev, D. I. Kryzhkov, L. V. Krasil’nikova, D. V. Shengurov, V. B. Shmagin, B. A. Andreev, and Z. F. Krasil’nik, JETP Lett. 100, 807 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    J. D. B. Bradley, and M. Pollnau, Laser Photon. Rev. 5, 368 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    G. Mula, T. Printemps, C. Licitra, E. Sogne, F. D’Acapito, N. Gambacorti, N. Sestu, M. Saba, E. Pinna, D. Chiriu, P. C. Ricci, A. Casu, F. Quochi, A. Mura, G. Bongiovanni, and A. Falqui, Sci. Rep. 7, 5957 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    J. M. Ramirez, Y. Berencen, L. Lopez-Conesa, J. M. Rebled, F. Peiro, and B. Garrido, Appl. Phys. Lett. 103, 081102 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    S. Wang, A. Eckau, E. Neufeld, R. Carius, and Ch. Buchal, Appl. Phys. Lett. 71, 2824 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    H. Krzyzanowska, K. S. Ni, Y. Fu, and P. M. Fauchet, Mater. Sci. Eng. B 177, 1547 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Berencen, S. Illera, L. Rebohle, J. M. Ramirez, R. Wutzler, A. Cirera, D. Hiller, J. A. Rodríguez, W. Skorupa, and B. Garrido, J. Phys. D: Appl. Phys. 49, 085106 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    K. Dasari, J. Wu, H. Huhtinen, W. M. Jadwisienczak, and R. Palai, J. Phys. D: Appl. Phys. 50, 175104 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    V. X. Ho, T. V. Dao, H. X. Jiang, J. Y. Lin, J. M. Zavada, S. A. McGill, and N. Q. Vinh, Sci. Rep. 7, 39997 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Lourenço, M. M. Milošević, A. Gorin, R. M. Gwilliam, and K. P. Homewood, Sci. Rep. 6, 37501 (2016).CrossRefGoogle Scholar
  26. 26.
    M. N. Drozdov, N. V. Latukhina, M. V. Stepikhova, V. A. Pokoeva, and M. A. Surin, Mod. Electron. Mater. 2, 7 (2016).CrossRefGoogle Scholar
  27. 27.
    S. Naczas, P. Akhter, and M. Huang, Appl. Phys. Lett. 98, 113101 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    M. Celebrano, L. Ghirardini, P. Biagioni, M. Finazzi, Y. Shimizu, Y. Tu, K. Inoue, Y. Nagai, T. Shinada, Y. Chiba, A. Abdelghafar, M. Yano, T. Tanii, and E. Prati, arXiv:1702.00331v1 (2017).Google Scholar
  29. 29.
    K. V. Feklistov, D. S. Abramkin, V. I. Obodnikov, and V. P. Popov, Tech. Phys. Lett. 41, 788 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    K. V. Feklistov, A. G. Cherkov, and V. P. Popov, Solid State Commun. 242, 41 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    A. Polman, J. S. Custer, E. Snoeks, and G. N. van den Hoven, Appl. Phys. Lett. 62, 507 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    J. S. Custer, A. Polman, and H. M. van Pinxteren, J. Appl. Phys. 75, 2809 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    O. B. Aleksandrov, Yu. A. Nikolaev, and N. A. Sobolev, Semiconductors 32, 1266 (1998).ADSCrossRefGoogle Scholar
  34. 34.
    J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, www.srim.org.Google Scholar
  35. 35.
    K. S. Jones, S. Prussin, and E. R. Weber, Appl. Phys. A 45, 1 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    B. de Mauduit, L. Lańab, C. Bergaud, M. M. Faye, A. Martinez, and A. Claverie, Nucl. Instrum. Methods Phys. Res. B 84, 190 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L. F. Giles, and N. E. B. Co-wern, J. Appl. Phys. 87, 8420 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    M. D. Rechtin, P. P. Pronko, G. Foti, L. Csepregi, E. F. Kennedy, and J. W. Mayer, Philos. Mag., A 37, 605 (1978).ADSCrossRefGoogle Scholar
  39. 39.
    A. L. Roitbijrd, Phys. Status Solidi A 37, 329 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    A. K. Gutakovskii, S. I. Stenin, and B. G. Zakharov, Phys. Status Solidi A 67, 299 (1981).ADSCrossRefGoogle Scholar
  41. 41.
    A. R. Lahrood, T. de los Arcos, M. Prenzel, A. von Keu-dell, and J. Winter, Thin Solis Films 520, 1625 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    M. Prieto-Depedro, I. Romero, and I. Martin-Bragado, Acta Mater. 82, 115 (2015).CrossRefGoogle Scholar
  43. 43.
    M. K. Miller and R. G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).CrossRefGoogle Scholar
  44. 44.
    R. C. Newman, J. Phys.: Condens. Matter 12, R335 (2000).ADSGoogle Scholar
  45. 45.
    NBS Selected Values of Chemical Thermodynamic Properties, Tech. Notes 270-7 (National Bureau of Standards, 1973), p. 65; Tech. Notes 270-2 (National Bureau of Standards, 1966), p. 24.Google Scholar
  46. 46.
    C. Choi, M. Jang, Y. Kim, M. Jun, T. Kim, and M. Song, Appl. Phys. Lett. 91, 012903-1 (2007).ADSCrossRefGoogle Scholar
  47. 47.
    C. Choi, M. Jang, Y. Kim, M. Jun, T. Kim, and M. Song, Mater. Trans. 51, 793 (2010).CrossRefGoogle Scholar
  48. 48.
    C. S. Wu, D. M. Scott, and S. S. Lau, J. Appl. Phys. 58, 1330 (1985).ADSCrossRefGoogle Scholar
  49. 49.
    Physical Values, the Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Feklistov
    • 1
    Email author
  • A. G. Cherkov
    • 1
    • 2
  • V. P. Popov
    • 1
  • L. I. Fedina
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations