Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1715–1720 | Cite as

Ab Initio Study of the ZnSnSb2 Semiconductor

  • Yu. M. BasalaevEmail author
MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • 10 Downloads

Abstract

For the chalcopyrite-like ZnSnSb2 crystal, the equilibrium crystal-lattice parameters a = 6.2893 Å, c = 12.5975 Å, and u = 0.2314 and the band structure involving the band gap Eg = 0.43 eV are determined by ab initio calculations based on density functional theory. The phonon vibrational frequencies, the elastic constants (C11 = 89.3, C12 = 41.9, C13 = 41.8, C33 = 90.4, C44 = 43.9, and C66 = 44.1), the phase velocities of elastic waves, the elasticity moduli, the microhardness (2.29 GPa), and the Grüneisen elastic parameter (1.5) are calculated. The temperature dependences of the heat capacity and thermodynamic potential are considered (in the range from 20 to 633 K).

Notes

REFERENCES

  1. 1.
    N. A. Goryunova, B. V. Baranov, V. S. Grigor’eva, L. V. Kradinova, V. A. Maksimova, and V. D. Prochukhan, Izv. Akad. Nauk SSSR, Neorg. Mater. 4, 1060 (1968).Google Scholar
  2. 2.
    N. A. Goryunova, V. S. Grigor’eva, L. V. Kradinova, and V. D. Prochukhan, Chemical Bonds in Crystals (Nauka Tekhnika, Minsk, 1969) [in Russian].Google Scholar
  3. 3.
    N. A. Goryunova, V. S. Grigor’eva, L. V. Kradinova, and V. D. Prochukhan, Tr. KPI, No. 2, p. 10 (1968).Google Scholar
  4. 4.
    A. S. Borshchevskii, A. A. Vaipolin, Yu. A. Valov, N. A. Goryunova, F. P. Kesamanly, A. Nazarov, V. D. Prochukhan, and V. A. Chaldyshev, A 2 B 4 \(C_{2}^{5}\) Semiconductors (Sov. Radio, Moscow, 1974) [in Russian].Google Scholar
  5. 5.
    A. A. Vaipolin, L. V. Kradinova, and V. D. Prochukhan, Sov. Phys. Crystallogr. 15, 703 (1970).Google Scholar
  6. 6.
    A. A. Vaipolin, Sov. Phys. Solid State 15, 965 (1973).Google Scholar
  7. 7.
    V. N. Ivakhno, L. V. Kradinova, and V. D. Prochukhan, Sov. Phys. Semicond. 3, 913 (1969).Google Scholar
  8. 8.
    I. I. Kozhina and A. S. Borshchevskii, Vestn. LGU, No. 22, 113 (1975).Google Scholar
  9. 9.
    L. I. Berger, L. V. Kradinova, V. M. Petrov, and V. D. Prochukhan, Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 1258 (1973).Google Scholar
  10. 10.
    L. V. Kradinova and T. I. Voronina, Phys. Status Solidi 32, 173 (1969).CrossRefGoogle Scholar
  11. 11.
    W. Scott, J. Appl. Phys. 44, 5165 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    Yu. I. Polygalov, Yu. M. Basalaev, M. L. Zolotarev, and A. S. Poplavnoi, Sov. Phys. Semicond. 23, 173 (1989).Google Scholar
  13. 13.
    K. Hubner and K. Unger, Phys. Status Solidi B 50, K105 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    A. Tenga, F. J. Garcia-Garcia, A. S. Mikhaylushkin, B. Espinosa-Arronte, and M. Andersson, Chem. Mater. 17, 6080 (2005).CrossRefGoogle Scholar
  15. 15.
    V. N. Brudnyi, Semiconductors 43, 1146 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Ito, Y. Ohishi, H. Muta, K. Kurosaki, and S. Yamanaka, Mater. Res. Soc. Symp. Proc. 1314, 618 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Bhosale, A. K. Ramdas, and A. Burger, Phys. Rev. B 86, 195208 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    S. C. Erwin and I. Zutic, Nat. Mater. 3, 410 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    L. Kilanski, M. Górska, A. Ślawska-Waniewska, S. Levińska, R. Szymczak, E. Dynowska, A. Podgórni, W. Dobrowolski, U. Ralević, R. Gajić, N. Romčević, I. V. Fedorchenko, and S. F. Marenkin, J. Phys.: Condens. Matter 28, 336004 (2016).Google Scholar
  20. 20.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, Comp. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  21. 21.
    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. de la Pierre, P. D’Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman, Int. J. Quantum Chem. 114, 1287 (2014).CrossRefGoogle Scholar
  22. 22.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  23. 23.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    S. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Yu. M. Basalaev and A. S. Poplavnoi, Electronic Structure of Ternary Diamond-Like Compounds with Chalcopyrite Structure (INT, Kemerovo, 2009) [in Russian].Google Scholar
  27. 27.
    V. N. Belomestnykh and E. P. Tesleva, Tech. Phys. 49, 1098 (2004).CrossRefGoogle Scholar
  28. 28.
    El-S. Yousef, A. El-Adawy, and N. El-KheshKhany, Solid State Commun. 139, 108 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations