Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1662–1668 | Cite as

Features of the Electron Mobility in the n-InSe Layered Semiconductor

  • A. Sh. AbdinovEmail author
  • R. F. BabayevaEmail author
ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • 8 Downloads

Abstract

The dependences of the Hall electron mobility of n-InSe single crystals grown by the Bridgman method on a sample’s technological history, temperature, electric field, doping, and illumination are experimentally investigated. It is established that at temperatures below room temperature, the dependences of the electron mobility on external factors, initial resistivity, and doping are anomalous, i.e., do not obey the theory of free carrier mobility in quasi-ordered crystalline semiconductors. The observed anomalies are attributed to partial disordering and fluctuation of the potential of free energy bands of the n-InSe single crystals and can be controlled by temperature, electric field, doping, and illumination.

Notes

REFERENCES

  1. 1.
    Z. S. Medvedeva, Chalcogenides of Elements of Subgroups IIIB of the Periodic System (Nauka, Moscow, 1968) [in Russian].Google Scholar
  2. 2.
    S. I. Drapak and Z. D. Kovalyuk, Semiconductors 41, 1197 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    G. A. Il’chuk, V. V. Kus’nezh, R. Yu. Petrus’, V. Yu. Rud’, Yu. V. Rud’, and V. O. Ukrainets, Semiconductors 41, 1170 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. N. Katerinchuk and Z. D. Kovalyuk, Semiconductors 38, 402 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    D. Erronea, D. Martinez-Garcia, J. Ruiz-Fuertes, et al., Semicond. Phys. Quant. Electron. Optoelectron. 4, 360 (2004).Google Scholar
  6. 6.
    S. R. Tamalampudi, Y. Y. Lu, U. R. Kumar, R. Sankar, C. D. Liao, B. K. Moorthy, C. H. Cheng, F. C. Chou, and Y. T. Chen, Nano Lett. 14, 2800 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    C. H. Ho, 2D Mater. 3, 025019 (2016).Google Scholar
  8. 8.
    J. Lauth, F. E. S. Gorris, M. S. Khoshkhoo, T. Ghasse, W. Friedrich, V. Lebedeva, A. Meyer, C. Klinke, A. Komowsld, and M. Scheele, Chem. Mater. 28, 1728 (2016).CrossRefGoogle Scholar
  9. 9.
    S. D. Lei, F. F. Wen, L. H. Ge, S. Najmaei, A. George, Y. J. Gong, W. L. Gao, Z. H. Jin, B. Li, and J. Lou, Nano Lett. 15, 3048 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    Z. S. Chen, J. Biscaras, and A. Shukla, Nanoscale 7, 5981 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    S. Sucharitakul, N. J. Goble, U. R. Kumar, R. Sankar, Z. A. Bogorad, F. C. Chou, Y. T. Chen, and X. P. A. Gao, Nano Lett. 15, 3815 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zolyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patane, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, Nat. Nanotechnol. 12, 223 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    W. B. Li and J. Li, Nano Res. 8, 3796 (2015).CrossRefGoogle Scholar
  14. 14.
    R. W. Damon and R. W. Redington, Phys. Rev. 96, 1498 (1954).ADSCrossRefGoogle Scholar
  15. 15.
    S. N. Mustafaeva, A. A. Ismailov, and M. M. Asadov, J. Low Temp. Phys. 36, 310 (2010).CrossRefGoogle Scholar
  16. 16.
    V. M. Kaminskii, Z. D. Kovalyuk, A. V. Zaslonkin, and V. I. Ivanov, Inorg. Mater. 48, 103 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Yu. Gusev, A. I. Dmitriev, A. N. Zyuganov, Z. D. Kovalyuk, V. I. Lazorenko, G. V. Lashkarev, and P. S. Smertenko, Sov. Phys. Semicond. 24, 885 (1990).Google Scholar
  18. 18.
    G. B. Abdullaev, S. M. Atakishiev, and G. A. Akhundov, Some Problems of Experimental and Theoretical Physics (Elm, Baku, 1967) [in Russian].Google Scholar
  19. 19.
    N. A. Ragimova, S. Z. Dzhafarova, and G. I. Abutalybov, Sov. Tech. Phys. Lett. 17, 81 (1991).Google Scholar
  20. 20.
    R. M. Rzayev, Azerb. J. Phys. 18 (3), 16 (2011).Google Scholar
  21. 21.
    B. Gurbulak, Phys. Scr. 70, 197 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    Z. A. Iskenderzade, O. M. Sadykhov, and A. Sh. Abdinov, Phys. Status Solidi A 92, 77 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    A. Sh. Abdinov and R. F. Babaeva, Neorg. Mater. 31, 1020 (1995).Google Scholar
  24. 24.
    A. Sh. Abdinov, R. F. Babaeva, A. T. Bagirova, and R. M. Rzaev, Inorg. Mater. 42, 937 (2006).CrossRefGoogle Scholar
  25. 25.
    A. Sh. Abdinov, A. M. Guseinov, Yu. G. Nurullayev, and O. M. Sadykhov, Phys. Status Solidi A 116, k173 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    N. Hannay, Solid-State Chemistry (Prentice-Hall, Englewood Cliffs, NJ, 1967).Google Scholar
  27. 27.
    Ya. A. Ugai, General and Inorganic Chemistry (Vyssh. Shkola, Moscow, 1997) [in Russian].Google Scholar
  28. 28.
    A. I. Artemenko, V. A. Malevannyi, and I. V. Tikunova, Handbook on Chemistry (Vyssh. Shkola, Moscow, 1990) [in Russian].Google Scholar
  29. 29.
    R. F. Mekhtiev, E. O. Osmanov, and Yu. V. Rud’, Prib. Tekh. Eksp. 2, 179 (1964).Google Scholar
  30. 30.
    A. M. Guseinov and T. I. Sadykhov, in Electrophysical Properties of Semiconductors and Gas Discharge Plasma, Collection of Articles (AGU, Baku, 1989), p. 42 [in Russian].Google Scholar
  31. 31.
    State Diagrams of Binary Metallic Systems (Mashinostroenie, Moscow,1966) [in Russian].Google Scholar
  32. 32.
    M. Hansen and K. Anderko, Structure of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar
  33. 33.
    Physicochemical Properties of Semiconductor Substances, The Handbook (Nauka, Moscow, 1979) [in Russian].Google Scholar
  34. 34.
    A. Likforman, D. Carre, Y. Etiune, and B. Bachet, Acta Crystallogr. 31, 1252 (1975).CrossRefGoogle Scholar
  35. 35.
    K. C. Nadpol and S. Z. Ali, Indian J. Pure: Appl. Phys. 14, 434 (1976).Google Scholar
  36. 36.
    T. Ohta, A. Klust, Y. A. Adams, Q. Yu, M. A. Olmstead, and F. S. Ohuchi, Phys. Rev. B 69, 125322 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    A. Sh. Abdinov, Ya. G. Gasanov, and F. I. Mamedov, Sov. Phys. Semicond. 16, 638 (1982).Google Scholar
  38. 38.
    A. Sh. Abdinov, Ya. G. Akperov, V. K. Mamedov, and El’. Yu. Salaev, Sov. Phys. Semicond. 15, 66 (1981).Google Scholar
  39. 39.
    N. B. Brandt, Z. D. Kovalyuk, and V. A. Kul’bachinskii, Sov. Phys. Semicond. 22, 1046 (1988).Google Scholar
  40. 40.
    R. Smith, Semiconductors (Cambridge Univ. Press, Cambridge, 1978; Mir, Moscow, 1991).Google Scholar
  41. 41.
    G. A. Akhundov, A. Sh. Abdinov, N. M. Mekhtiev, and A. G. Kyazym-zade, Sov. Phys. Semicond. 8, 124 (1974).Google Scholar
  42. 42.
    A. Sh. Abdinov and A. G. Kyazym-zade, Sov. Phys. Semicond. 10, 47 (1976).Google Scholar
  43. 43.
    A. Ya. Shik, Zh. Eksp. Teor. Fiz. 15, 408 (1972).Google Scholar
  44. 44.
    M. K. Sheinkman and A. Ya. Shik, Sov. Phys. Semicond. 10, 128 (1976).Google Scholar
  45. 45.
    E. D. Golovkina, N. N. Levchenya, and A. Ya. Shik, Sov. Phys. Semicond. 10, 229 (1976).Google Scholar
  46. 46.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Baku State UniversityBakuAzerbaijan
  2. 2.Azerbaijan State University of Economics (UNEC)BakuAzerbaijan

Personalised recommendations