Advertisement

Semiconductors

, Volume 52, Issue 11, pp 1442–1447 | Cite as

Formation and Properties of Locally Tensile Strained Ge Microstructures for Silicon Photonics

  • A. V. NovikovEmail author
  • D. V. Yurasov
  • E. E. Morozova
  • E. V. Skorohodov
  • V. A. Verbus
  • A. N. Yablonskiy
  • N. A. Baidakova
  • N. S. Gusev
  • K. E. Kudryavtsev
  • A. V. Nezhdanov
  • A. I. Mashin
XXII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 12–15, 2018
  • 62 Downloads

Abstract

The formation and properties of locally tensile strained Ge microstructures (“microbridges”) based on Ge layers grown on silicon substrates are investigated. The elastic-strain distribution in suspended Ge microbridges is analyzed theoretically. This analysis indicates that, in order to attain the maximum tensile strain within a microbridge, the accumulation of strain in all corners of the fabricated microstructure has to be minimized. Measurements of the local strain using Raman scattering show significant enhancement of the tensile strain from 0.2–0.25% in the initial Ge film to ~2.4% in the Ge microbridges. A considerable increase in the luminescence intensity and significant modification of its spectrum in the regions of maximum tensile strain in Ge microbridges and in their vicinity as compared to weakly strained regions of the initial Ge film is demonstrated by microphotoluminescence spectroscopy.

Notes

ACKNOWLEDGMENTS

This study was partially performed in the framework of the State assignment for the Institute for Physics of Microstructures, Russian Academy of Sciences (theme no. 0035-2014-0201). The study was supported by the Russian Foundation for Basic Research (project no. 16-29-14056-ofi_m). Measurements were carried out using equipment of the Stand “Femtospectrum” of Center “Physics and technology of micro- and nanostructures” at the Institute for Physics of Microstructures.

REFERENCES

  1. 1.
    S. Saito, A. Z. Al-Attili, K. Oda, and Y. Ishikawa, Semicond. Sci. Technol. 31, 043002 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    R. Geiger, T. Zabel, and H. Sigg, Front. Mater. 2, 52 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    J. Menéndez and J. Kouvetakis, Appl. Phys. Lett. 85, 1175 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    M. Virgilio, C. L. Manganelli, G. Grosso, G. Pizzi, and G. Capellini, Phys. Rev. B 87, 235313 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    Y.-Y. Fang, J. Tolle, R. Roucka, A. V. G. Chizmeshya, and J. Kouvetakis, Appl. Phys. Lett. 90, 061915 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    G. Capellini, M. De Seta, P. Zaumseil, G. Kozlowski, and T. Schroeder, J. Appl. Phys. 111, 73518 (2012).CrossRefGoogle Scholar
  8. 8.
    R. A. Minamisawa, M. J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K. K. Bourdelle, and H. Sigg, Nat. Commun. 3, 1096 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Nat. Photon. 7, 466 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, Nat. Commun. 8, 1845 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    J.-M. Hartmann, A. Abbadie, J. P. Barnes, J. M. Fedeli, T. Billon, and L. Vivien, J. Cryst. Growth 312, 532 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    D. V. Yurasov, A. I. Bobrov, V. M. Daniltsev, A. V. Novikov, D. A. Pavlov, E. V. Skorokhodov, M. V. Shaleev, and P. A. Yunin, Semiconductors 49, 1415 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    D. V. Yurasov, A. V. Antonov, M. N. Drozdov, V. B. Schmagin, K. E. Spirin, and A. V. Novikov, J. Appl. Phys. 118, 145701 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    N. A. Baidakova, V. A. Verbus, E. E. Morozova, A. V. Novikov, E. V. Skorokhodov, M. V. Shaleev, D. V. Yurasov, A. Hombe, Y. Kurokawa, and N. Usami, Semiconductors 51, 15424 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Gassenq, S. Tardif, K. Guilloy, I. Duchemin, N. Pauc, J.-M. Hartmann, D. Rouchon, J. Widiez, Y. M. Niquet, L. Milord, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, and V. Calvo, J. Appl. Phys. 121, 055702 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    J. J. Wortman and R. A. Evans, J. Appl. Phys. 36, 153 (1965).ADSCrossRefGoogle Scholar
  19. 19.
    Guo-En Chang and H. H. Cheng, J. Phys. D: Appl. Phys. 46, 065103 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    G. Capellini, C. Reich, S. Guha, Y. Yamamoto, M. Lisker, M. Virgilio, A. Ghrib, M. El Kurdi, P. Boucaud, B. Tillack, and T. Schroeder, Opt. Express 22, 399 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    K. P. Rola and I. Zubel, Mater. Sci. Poland 29, 278 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Novikov
    • 1
    • 2
    Email author
  • D. V. Yurasov
    • 1
  • E. E. Morozova
    • 1
  • E. V. Skorohodov
    • 1
  • V. A. Verbus
    • 1
    • 3
  • A. N. Yablonskiy
    • 1
  • N. A. Baidakova
    • 1
  • N. S. Gusev
    • 1
  • K. E. Kudryavtsev
    • 1
    • 2
  • A. V. Nezhdanov
    • 2
  • A. I. Mashin
    • 2
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesAfoninoRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.National Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations