Advertisement

Semiconductors

, Volume 52, Issue 10, pp 1298–1302 | Cite as

Analysis of the Features of Hot-Carrier Degradation in FinFETs

  • A. A. Makarov
  • S. E. Tyaginov
  • B. Kaczer
  • M. Jech
  • A. Chasin
  • A. Grill
  • G. Hellings
  • M. I. VexlerEmail author
  • D. Linten
  • T. Grasser
PHYSICS OF SEMICONDUCTOR DEVICES
  • 42 Downloads

Abstract

For the first time, hot-carrier degradation (HCD) is simulated in non-planar field-effect transistors with a fin-shaped channel (FinFETs). For this purpose, a physical model considering single-carrier and multiple-carrier silicon–hydrogen bond breaking processes and their superpositions is used. To calculate the bond-dissociation rate, carrier energy distribution functions are used, which are determined by solving the Boltzmann transport equation. A HCD analysis shows that degradation is localized in the channel region adjacent to the transistor drain in the top channel-wall region. Good agreement between the experimental and calculated degradation characteristics is achieved with the same model parameters which were used for HCD reproduction in planar short-channel transistors and high-power semiconductor devices.

Notes

ACKNOWLEDGMENTS

The authors acknowledge support by the Austrian Research Promotion Agency (FFG), project no. 861022.

REFERENCES

  1. 1.
    Interational Technology Roadmap for Semiconductors (SIA, 2015), Chap. 5.Google Scholar
  2. 2.
    F. Isabelle, C. A. Colinge, and J.-P. Colinge, Nature (London, U.K.) 479 (7373), 310 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nat. Nano 5, 225 (2010).CrossRefGoogle Scholar
  4. 4.
    C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, et al., in Proceedings of the Symposium on VLSI Technology, Honolulu, Hawaii, June 12–15, 2012, p. 131.Google Scholar
  5. 5.
    S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, P. Packan, P. Nayak, S. Ramey, and S. Natarajan, in Proceedings of the IEEE International Reliability Physics Symposium, 2015, Paper No. 2F.2.Google Scholar
  6. 6.
    D. H. Lee, S. M. Lee, C. G. Yu, and J. T. Park, IEEE Electron Dev. Lett. 32, 1176 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    S. Ramey, A. Ashutosh, C. Auth, J. Clifford, M. Hattendorf, J. Hicks, R. James, A. Rahman, V. Sharma, A. St. Amour, and C. Wiegand, in Proceedings of the IEEE International Reliability Physics Symposium (IRPS), 2013, Paper No. 4C.5.Google Scholar
  8. 8.
    M. Cho, P. Roussel, B. Kaczer, R. Degraeve, J. Franco, M. Aoulaiche, T. Chiarella, T. Kauerauf, N. Horiguchi, and G. Groeseneken, IEEE Trans. Electron Dev. 60, 4002 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    C.-D. Young, J.-W. Yang, K. Matthews, S. Suthram, M. M. Hussain, G. Bersuker, C. Smith, R. Harris, R. Choi, B. H. Lee, and H.-H. Tseng, J. Vac. Sci. Technol., B 27, 468 (2009).CrossRefGoogle Scholar
  10. 10.
    I. Messaris, T. A. Karatsori, N. Fasarakis, C. G. Theodorou, S. Nikolaidis, G. Ghibaudo, and C. A. Dimitriadis, Microelectron. Reliab. 56, 10 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent, in Proceedings of the International Reliability Physics Symposium IRPS, 2009, p. 531.Google Scholar
  12. 12.
    S. Rauch and G. la Rosa, in Proceedings of the International Reliability Physics Symposium IRPS, 2010, tutorial.Google Scholar
  13. 13.
    S. Tyaginov and T. Grasser, in Proceedings of the International Integrated Reliability Workshop IIRW, 2012, p. 206.Google Scholar
  14. 14.
    I. Starkov, S. Tyaginov, H. Enichlmair, J. Cervenka, C. Jungemann, S. Carniello, J. M. Park, H. Ceric, and T. Grasser, J. Vac. Sci. Technol., B 29, 01AB09 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Tyaginov, I. Starkov, C. Jungemann, H. Enichlmair, J. M. Park, and T. Grasser, in Proceedings of the European Solid-State Device Research Conference, 2011, p. 151.Google Scholar
  16. 16.
    S. E. Tyaginov, I. A. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. M. Park, H. Enichlmair, M. Karner, Ch. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser, Microelectron. Reliab. 50, 1267 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Bina, S. Tyaginov, J. Franco, K. Rupp, Y. Wimmer, D. Osintsev, B. Kaczer, and T. Grasser, IEEE Trans. Electron Dev. 61, 3103 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    S. Tyaginov, M. Jech, J. Franco, P. Sharma, B. Kaczer, and T. Grasser, IEEE Electron Dev. Lett. 37, 84 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    C. E. Tyaginov, A. A. Makarov, M. Jech, M. I. Vexler, J. Franco, B. Kaczer, and T. Grasser, Semiconductors 52, 242 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    P. Sharma, S. Tyaginov, Y. Wimmer, F. Rudolf, K. Rupp, M. Bina, H. Enichlmair, J.-M. Park, R. Minixhofer, H. Ceric, and T. Grasser, IEEE Trans. Electron Dev. 62, 1811 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    P. Sharma, S. Tyaginov, M. Jech, Y. Wimmer, F. Rudolf, H. Enichlmair, J.-M. Park, H. Ceric, and T. Grasser, Solid-State Electron. 115 (Part B), 185 (2016).Google Scholar
  22. 22.
    K. Rupp, T. Grasser, and A. Jungel, in Proceedings of the International Electron Devices Meeting, 2011, p. 789.Google Scholar
  23. 23.
    M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser, in Proceedings of the International Electron Devices Meeting IEDM, 2012, p. 713.Google Scholar
  24. 24.
    K. L. Brower, Phys. Rev. B 42, 3444 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    K. Hess, I. C. Kizilyalli, and J. W. Lyding, IEEE Trans Electron Dev. 45, 406 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    W. McMahon and K. Hess, J. Comput. Electron. 1, 395 (2002).CrossRefGoogle Scholar
  27. 27.
    C. Guerin, V. Huard, and A. Bravaix, J. Appl. Phys. 105, 114513 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    S. Tyaginov, M. Bina, J. Franco, D. Osintsev, O. Triebl, B. Kaczer, and T. Grasser, in Proceedings of the International Reliability Physics Symposium, 2014, Paper No. XT.16.Google Scholar
  29. 29.
    MiniMOS-NT Device and Circuit Simulator, Inst. for Microelectron., TU Wien.Google Scholar
  30. 30.
    A. Chasin, J. Franco, R. Ritzenthaler, G. Hellings, M. Cho, Y. Sasaki, A. Subirats, P. Roussel, B. Kaczer, D. Linten, N. Horiguchi, G. Groeseneken, and A. Thean, in Proceedings of the IEEE International Reliability Physics Symposium, 2016, Paper No. 4B-4.Google Scholar
  31. 31.
    A. Bravaix and V. Huard, in Proceedings of the European Symposium on Reliability of Electron Devices Failure Physics and Analysis, 2010, p. 1267.Google Scholar
  32. 32.
    T. Grasser, Microelectron. Reliab. 52, 39 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Makarov
    • 1
  • S. E. Tyaginov
    • 1
    • 2
  • B. Kaczer
    • 3
  • M. Jech
    • 1
  • A. Chasin
    • 3
  • A. Grill
    • 1
  • G. Hellings
    • 3
  • M. I. Vexler
    • 2
    Email author
  • D. Linten
    • 3
  • T. Grasser
    • 1
  1. 1.TU Vienna, Institute for MicroelectronicsViennaAustria
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.IMECLeuvenBelgium

Personalised recommendations